

Cold OUtflows Ruffling the AGn Environment

Claudia Cicone Marie Curie (AstrofIt2) Fellow @ INAF OABrera

The galaxy population

Log (stellar mass) cartoon by S. Lilly

A simple cartoon to visualize a complex process. What we know from *optical surveys*:

- Most star-forming galaxies follow a tight correlation between SFR and M*, the "main sequence" (up to z~2)
- Only a few % outliers lie above the main sequence, the "starbursts" (inc. ULIRGs, LIRGs, mergers)
- Passive galaxies observed up to z~2.5
 in which star formation was
 suppressed early and rapidly

What suppresses star formation in massive galaxies?

cartoon by S. Lilly

Galactic outflows can affect availability of gas as well as its physical conditions (n, T, Z) -> what is the effect on star formation (negative feedback)?

The importance of molecular gas

H₂ is the primary ingredient for star formation

 $\rm H_2\ distribution\ follows\ closely\ that$ of newly formed stars

Molecular gas and SFR tightly correlated in star forming galaxies (fundamental scaling relation)

Hence any mechanism affecting the properties of H₂ will necessarily affect the capability of a galaxy to form stars -> role of H₂ outflows

Star formation-driven outflows

North

Molecular outflows driven uniquely by star formation: $dM_{out}/dt \sim SFR$ Max outflow velocity $\sim 100-200$ km/s

Molecular outflows in local AGN hosts

Large masses of cold H_2 gas outflowing at v ~ 1000 km/s detected in AGN host galaxies on scales of a few kpc

 $dM_{out}/dt >> SFR$

Cicone+14

[Rapidly expanding field, Aalto+12,15,16,Alatalo+11,15, Cicone+12, Combes+13, Dasyra+12,14,15,16, Feruglio+13a,b,15, Fiore+17, Fischer+10, Garcia-Burillo+14, Morganti+13,+15, Sun+14, Tadhunter+14, Emonts+14, Tunnard+15, Lindberg+15, Sturm+11, Stone+16, Spoon+13, Zschaechner+16, Carniani+17, Veilleux+13,+17,Gonzalez-Alfonso+17]

Quasar-mode feedback at high-z

Image & simulations by T. Costa, D. Sijacki & M. Haehnelt 2015

High-z quasars: fast and *synchronous* growth of SMBHs and their host galaxies. Feedback mechanisms expected to be important!

Massive outflow in a z~6 quasar

More high-z molecular outflow detections: Carniani+17, Feruglio+17

Molecular outflows and radiative-mode AGN feedback

Measurements of outflow kinetic power and momentum rate show good agreement with models of radiative-mode AGN feedback

Cicone+14

The COURAGE project

2 meanings:

- "Cold OUtflows Ruffling the AGn Environment"

COURAGE
 (and strength) !!!

Main themes:

- 1. The physical properties of cold outflows
- 2. The outflow acceleration mechanism (from pc to kpc scales)
- Yoshida+16
 - 3. AGN feedback in the early Universe

The COURAGE project

2 meanings:

- "Cold OUtflows Ruffling the AGn Environment"

 COURAGE (and strength) !!!

Main themes:

- 1. The physical properties of cold outflows
- 2. The outflow acceleration mechanism (from pc to kpc scales)
- Yoshida+16
- 3. AGN feedback in the early Universe

Molecular outflows and radiative-mode AGN feedback

Journe and momentum rate show good agreement with models of radiative-mode AGN feedback

Cicone+14

The Carbon method

Aim: test the capability of the $[CI]^{3}P_{1}^{-3}P_{0}$ line to probe H₂ in outflow. Why?

- 1) Atomic carbon (CI) is fully concomitant with H_2 2) [CI] lines are optically thin -> straightforward estimate of M_{H_2}
- 3) [CI] lines can be observed from $z\sim0$ to z>6
- 4) [CI] can probe CO-dark H_2 gas

 $M_{mol} = \alpha_{CO(1-0)} L'_{12CO(1-0)}$

```
\alpha_{CO(1-0)}^{TOT} = 1.83 + 0.09
\alpha_{CO(1-0)}^{NARROW} = 3.3 + 0.3
\alpha_{CO(1-0)}^{BROAD} = 1.55 + 0.10
```

Cicone+ in prep

Molecular outflows ruffling AGNs

- Can expel large masses of H₂ gas "out" of the host galaxy in a very short time (a few Myr) with v >1000 km/s -> How good are our mass estimates based on CO?
- Properties of the outflows consistent with models of radiative-mode AGN feedback -> What is the link with hot nuclear winds?
- Extend by several 10s of kpc. So far most extended outflow detection allowed by data: R~30 kpc @ z=6.4. How common at high z?

Preliminary results indicate that CO traces outflows better than "quiescent" gas (because $\alpha_{co(1-0)}$ is lower for the broad than for the narrow component)

-> Carbon method is promising, but CO is a worthy adversary!