

Asteroseismology and Optical Interferometry Workshop 5 October 2017

Metallicity effect on stellar granulation detected from red giants in open clusters

ENRICO CORSARO

Marie Sklodowska-Curie Fellow AstroFlt2 INAF - Osservatorio Astrofisico di Catania

S. MATHUR, R. A. GARCÍA, P. GAULME, M. PINSONNEAULT, K. STASSUN, D. STELLO, J. TAYAR, R. TRAMPEDACH, C. JIANG, C. NITSCHELM, AND D. SALABERT

INTRODUCTION STELLAR GRANULATION

- A type of stellar *variability*
- Manifestation of surface convection
- First observed and studied in the Sun HERSCHEL 1801; HARVEY 1985
- Typical for low- and intermediate-mass stars (many!!)
 E.G. MATHUR ET AL. 2011; KAROFF ET AL. 2013; KALLINGER ET AL. 2014
- Time-scale accurately probes surface gravity BROWN ET AL. 1991; BASTIEN ET AL. 2013; KALLINGER ET AL. 2016
- Understand stellar granulation improves treatment of convection, hence stellar models

© SVST SOLAR GRANULATION

METALLICITY EFFECT STELLAR GRANULATION

- 3D HD simulations predict dependency on [Fe/H] COLLET ET AL. 2007; TANNER ET AL. 2013; MAGIC ET AL. 2015A,B; LUDWIG & STEFFEN 2016
- Increased opacity makes granules bigger
- Amplitude of granulation signal increases because
 LUDWIG 2006

 $a_{\rm gran} \propto n_{\rm gran}^{-0.5}$

METALLICITY EFFECT STELLAR GRANULATION

- 3D HD simulations predict dependency on [Fe/H] COLLET ET AL. 2007; TANNER ET AL. 2013; MAGIC ET AL. 2015A,B; LUDWIG & STEFFEN 2016
- Increased opacity makes granules bigger

[Fe/H] = 0.0

 Amplitude of granulation signal increases because
 LUDWIG 2006

 $a_{\rm gran} \propto n_{\rm gran}^{-0.5}$

 No evidence from past observations (e.g. CoRoT, Kepler)
 BROWN ET AL. 1991; MATHUR ET AL. 2011; BASTIEN ET AL. 2013; KALLINGER ET AL. 2014

SELECTING THE SAMPLE OBSERVATIONS AND DATA

- To better isolate and study effect of [Fe/H] we need:
 - stars with homogeneous set of stellar properties

4 years photometry with *Kepler*

accurate [Fe/H], T_{eff} for many stars

Spectroscopy with DR13 APOGEE-2 + KASC

PINSONNEAULT ET AL. 2014

ENRICO CORSARO - 5 OCTOBER 2017 - ASTEROSEISMOLOGY AND OPTICAL INTERFEROMETRY WORKSHOP

EVOLVED SOLAR-TYPE STARS RED GIANTS

SELECTING THE SAMPLE OBSERVATIONAL PROPERTIES

CORSARO ET AL. 2012; CORSARO ET AL. 2017A

ASTEROSEISMOLOGY STELLAR MASSES

- Masses computed from asteroseismology with acoustic modes v_{max} from global fit + Δv from peak bagging CORSARO ET AL. IN PREP.
- Correction to Δv with stellar population synthesis modeling SHARMA ET AL. 2016

MEASURING GRANULATION PROPERTIES THE BACKGROUND MODELING

• Bayesian inference code **DIAMONDS**

https://github.com/EnricoCorsaro/DIAMONDS

CORSARO & DE RIDDER, 2014, A&A, 571, 71 CORSARO, DE RIDDER, GARCIA, 2015, A&A, 579, 83

 Background signal modeled with granulation and meso-granulation
 HARVEY 1985; KALLINGER ET AL. 2014; 2016

Both components scale linearly

 $a_{\rm meso}/a_{
m gran} = 1.31 \pm 0.18$ $b_{
m meso}/b_{
m gran} = 0.32 \pm 0.04$

THE MESO-GRANULATION SIGNAL BACKGROUND FIT RESULTS

- Two distinct groups, mostly coinciding with the two different [Fe/H] regimes
- Difference systematic along surface gravity range
 2.3 < log g < 3.1

BAYESIAN INFERENCE GENERAL SCALING RELATIONS

BAYESIAN INFERENCE GENERAL SCALING RELATIONS

$$\begin{pmatrix} a_{\text{meso}} \\ a_{\text{meso},\odot} \end{pmatrix} = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}} \right)^s \left(\frac{M}{M_{\odot}} \right)^t e^{u[\text{Fe/H}]}$$

$$\begin{pmatrix} b_{\text{meso}} \\ \overline{b}_{\text{meso},\odot} \end{pmatrix} = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}} \right)^s \left(\frac{M}{M_{\odot}} \right)^t e^{u[\text{Fe/H}]}$$

$$\text{LINEARIZATION}$$

$$\ln \left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}} \right) = \ln \beta + +s \ln \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}} \right) + t \ln \left(\frac{M}{M_{\odot}} \right) + u[\text{Fe/H}]$$

$$\text{TOTAL UNCERTAINTY}$$

$$\tilde{\sigma}_a^2(s,t,u) = \tilde{\sigma}_{a_{\text{meso}}}^2 + s^2 \tilde{\sigma}_{\nu_{\text{max}}}^2 + t^2 \tilde{\sigma}_M^2 + u^2 \tilde{\sigma}_{[\text{Fe/H}]}^2$$

$$\text{CORSARO ET AL. 2013; BONANNO ET AL. 2014}$$

$$\left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}}\right) = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^s \left(\frac{M}{M_{\odot}}\right)^t e^{u[\text{Fe/H}]}$$

$$\widetilde{\sigma}_a^2(s,t,u) = \widetilde{\sigma}_{a_{\rm meso}}^2 + s^2 \widetilde{\sigma}_{\nu_{\rm max}}^2 + t^2 \widetilde{\sigma}_M^2 + u^2 \widetilde{\sigma}_{\rm [Fe/H]}^2$$

$$\left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}}\right) = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^s \left(\frac{M}{M_{\odot}}\right)^t e^{u[\text{Fe}/\text{H}]}$$

$$\widetilde{\sigma}_a^2(s,\mathbf{X},\mathbf{X}) = \widetilde{\sigma}_{a_{\rm meso}}^2 + s^2 \widetilde{\sigma}_{\nu_{\rm max}}^2 + t^2 \widetilde{\widetilde{\sigma}_{\rm L}}^2 + u^2 \widetilde{\rho}_{\rm [Fe/H]}^2$$

ENRICO CORSARO - 5 OCTOBER 2017 - ASTEROSEISMOLOGY AND OPTICAL INTERFEROMETRY WORKSHOP

$$\left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}}\right) = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^s \left(\frac{M}{M_{\odot}}\right)^t e^{u[\text{Te/ff}]}$$

$$\widetilde{\sigma}_a^2(s,t,\textbf{X}) = \widetilde{\sigma}_{a_{\rm meso}}^2 + s^2 \widetilde{\sigma}_{\nu_{\rm max}}^2 + t^2 \widetilde{\sigma}_M^2 + u^2 \widetilde{\sigma}_{\rm [Fe/H]}^2$$

$$\left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}}\right) = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^s \left(\frac{M}{M_{\odot}}\right)^t e^{u[\text{Fe/H}]}$$

$$\widetilde{\sigma}_a^2(s, \bigstar u) = \widetilde{\sigma}_{a_{\rm meso}}^2 + s^2 \widetilde{\sigma}_{\nu_{\rm max}}^2 + t^2 \widetilde{\sigma}_{\rm M}^2 + u^2 \widetilde{\sigma}_{\rm [Fe/H]}^2$$

ENRICO CORSARO - 5 OCTOBER 2017 - ASTEROSEISMOLOGY AND OPTICAL INTERFEROMETRY WORKSHOP

$$\left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}}\right) = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^s \left(\frac{M}{M_{\odot}}\right)^t e^u [\text{Fe/H}]$$

$$\widetilde{\sigma}_a^2(s,t,u) = \widetilde{\sigma}_{a_{\rm meso}}^2 + s^2 \widetilde{\sigma}_{\nu_{\rm max}}^2 + t^2 \widetilde{\sigma}_M^2 + u^2 \widetilde{\sigma}_{\rm [Fe/H]}^2$$

$$\left(\frac{a_{\text{meso}}}{a_{\text{meso},\odot}}\right) = \beta \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^s \left(\frac{M}{M_{\odot}}\right)^t e^u [\text{Fe/H}]$$

$$\widetilde{\sigma}_a^2(s,t,u) = \widetilde{\sigma}_{a_{\rm meso}}^2 + s^2 \widetilde{\sigma}_{\nu_{\rm max}}^2 + t^2 \widetilde{\sigma}_M^2 + u^2 \widetilde{\sigma}_{\rm [Fe/H]}^2$$

RESULTS FROM THE FAVORED SCALING RELATION METALLICITY EFFECT ON AMPLITUDE

- Amplitude increases with increasing **[Fe/H]**
- No dependency on ev. stage (RC vs RGB)

$$s = -0.59^{+0.01}_{-0.01}$$

$$a_{
m gran} \propto
u_{
m max}^{-0.5}$$
 Kallinger et al. 2014

RESULTS FROM THE FAVORED SCALING RELATION METALLICITY EFFECT ON AMPLITUDE

$$s = -0.59^{+0.01}_{-0.01}$$
$$u = 0.89^{+0.08}_{-0.08}$$

- Amplitude increases with increasing **[Fe/H]**
- No dependency on ev. stage (RC vs RGB)
- 11% increase in amplitude for 0.32 dex increase in [Fe/H] vs. 12% from 3D HD simulations LUDWIG & STEFFEN 2016
- Metallicity dependence 1.5 times stronger than g

RESULTS FROM THE FAVORED SCALING RELATION METALLICITY EFFECT ON FREQUENCY

© CORSARO ET AL. 2017, A&A, 605, A3

© CORSARO ET AL. 2017, A&A, 605, A3

- Frequency decreases with increasing [Fe/H]
- No clear evidence from 3D HD simulations
 LUDWIG & STEFFEN 2016
- Metallicity dependence has strength comparable to that of *g*
- No dependency on ev. stage (RC vs RGB)

RESULTS FROM THE FAVORED SCALING RELATION MASS (RADIUS) EFFECT ON AMPLITUDE

- Amplitude decreases with increasing M KALLINGER ET AL. 2014
- Real effect comes from increasing **R** for constant **g**

[©] CORSARO ET AL. 2017, A&A, 605, A3

RESULTS FROM THE FAVORED SCALING RELATION MASS (RADIUS) EFFECT ON AMPLITUDE

- Amplitude decreases with increasing M KALLINGER ET AL. 2014
- Real effect comes from increasing **R** for constant **g**

[©] CORSARO ET AL. 2017, A&A, 605, A3

• Mass effect weaker than [Fe/H]

RESULTS FROM THE FAVORED SCALING RELATION MASS (RADIUS) EFFECT ON FREQUENCY

[©] CORSARO ET AL. 2017, A&A, 605, A3

- Frequency decreases with increasing *M* (like amplitude)
- Mass effect weaker than [Fe/H]

SUMMARY & CONCLUSION

 Both metallicity and mass play a *significant* role in changing the granulation properties — [Fe/H] more important

 No influence from ev. stage — Granulation depends on atmospheric parameters only

TAKE HOME MESSAGES

- We can obtain accurate+precise *surface gravity* for many stars
- If accurate+precise *radii* provided (e.g. asteroseismology, interferometry), we get accurate+precise *mass*
- If mass known, scaling relations can be used to estimate [Fe/H] for large samples of stars without spectroscopy

Thank you!

ENRICO CORSARO

