Tracing the chemical evolution of organic molecules from dark clouds to planetary systems

Vianney Taquet Osservatorio Astrofisico di Arcetri - INAF AstroFIt 2 Fellowship

Chemical evolution from dark clouds to planetary systems

Chemical evolution from dark clouds to planetary systems

Interstellar complex organic molecules

Star formation is accompanied by a chemical complexity process

- 60 of the 175 detected interstellar species are complex organic molecules (COMs)
(molecules with ≥ 6 atoms based on carbon; Herbst & van Dishoeck 2009)

 Most of them detected towards massive star-forming regions, ≈ 30 % detected towards low-mass protostars

- Some of them could be at the origin of the formation of amino- and hydroxy-acids observed in meteorites (Pizzarello et al. 2006)

6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
C ₅ H	CgH	CH3C3N	CH3C4H	CH3C5N	HC ₉ N	o-CeHe*	HC11N ?
MH2C4	CH ₂ CHCN	HC(O)OCH3	CH3CH2CN	(CH ₃) ₂ CO	CHyCeH	A-C3H7CN	Ce0*
C2H4*	CH ₃ C ₂ H	CH3COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C2H3OCHO	HC2H7CN	C70*
CH3CN	HC ₅ N	C ₇ H	CH3CH2OH	снаснасно	CH3OC(O)CH3	C2H5OCH37	C60**
CH3NC	СНуСНО	C ₆ H ₂	HC ₇ N	CH3CHCH2O 2016			
CH3OH	CH ₃ NH ₂	СН2ОНСНО	CoH				
CH ₂ SH	0-02440	FHC0H*	CH3C(O)NH2				
HC3NH*	Н₂ССНОН	CH2CHCHO (?)	C ₀ H ⁻				
HC2CHO	C ₀ H ⁻	CH2CCHCN	C ₀ H ₀				
NH2CHO	CH ₃ NCO 2015	H2NCH2CN	CH3CH2SH (7)				
C ₅ N		CH ₂ CHNH					
AHC4H*							
HHC4N							
eH ₂ C ₂ O							
H2CONH (?)							
C ₅ N ⁻							
HNCHCN							

Organic molecules in prestellar cores

Recent detection of a handful of O-bearing organic molecules with millimetric single dish telescopes towards a few prestellar cores

Example: Detection of the usual complex organics (CH₃CHO, CH₃OCHO, CH₃OCH₃, HCOOH) with the IRAM 30m, NRO 45m, and OSO 20m towards the the Barnard 5 dark cloud

See also Bacmann, Taquet et al. (2012), Cernicharo et al. (2012), Vastel et al. (2014), Jimenez-Serra et al. (2016)

Organic male cules in low class protoscars

Organic molecules of increasing complexity are detected in the inner regions of low-mass protostars with large millimetric interferometers (ALMA, NOEMA)

Example: IRAS 16293 observed with the ALMA-PILS survey

See also Cazaux et al. (2003), Bottinelli et al. (2004, 2007), Caux et al. (2011), Taquet et al. (2015), Santangelo et al. (2015), Lopez-Sepulcre et al. (2017)

Organic molecules in low-mass protostars

Organic molecules of increasing complexity are detected in the inner regions of low-mass protostars with large millimetric interferometers (ALMA, NOEMA)

Water H₂O

CO₂ (in interstellar ices)

Alcohol: Ethanol CH₃CH₂OH

Sugar: Glycol aldehyde HCOCH₂OH

Acid: Acetic acid CH₃COOH

Organic molecules in low-mass protostars

Organic molecules of increasing complexity are detected in the inner regions of low-mass protostars with large millimetric interferometers (ALMA, NOEMA)

Water H₂O

CO₂ (in interstellar ices)

Alcohol: Ethanol CH₃CH₂OH

Sugar: Glycol aldehyde HCOCH₂OH

Acid: Acetic acid CH₃COOH

Interstellar mojito !

Mint is still missing though...

Organic molecules in protoplanetary disks

Only two complex organics (CH₃CN and CH₃OH) detected in protoplanetary disks so far, partly because of small size and weak brightness of disks

TW Hydrae observed with ALMA: need to stack several CH₃OH transitions

Walsh et al. (2016)

Organic molecules in comets

Remote sensing and in-situ analysis revealed the chemical richness of comets and meteorites

Similar organic molecules detected in protostars in comets with millimetric observatories, with similar abundances

And comet 67P/C-G analysed by *Rosetta*...

The Rosetta/ROSINA zoo

→ THE COMETARY ZOO: GASES DETECTED BY ROSETTA

THE LONG CARBON CHAINS Methane

Ethane Propane Butane Pentane Hexane Heptane

THE ALCOHOLS Methanol Ethanol Propanol Butanol Pentaeol

THE TREASURES WITH A HARD CRUST Sodium Potassiam Silicon Magnesiam

www.esa.int

THE AROMATIC RING COMPOUNDS Benzone Toluene Xulene

> Beszoic acid Naphtalene

THE VOLATILES Nitrogen Oxygen Hydrogen peroxide Carbon monoxide Carbon diaxide

THE "SALTY" BEASTS Hydrogen fluoride Hydrogen chleride Hydrogen bromide Phasphorus Chlaromethane THE BEA AND SO Argon Krypton Xenon

THE BEAUTIFUL AND SOLITARY Argon Krypton Xenon

THE KING OF THE ZOO

Glytine (amine acid)

Deaths Based or date from #012908

THE "MANURE SMELL" MOLECULES Ammenia Methylamine Ethylamine

THE "EXOTIC" MOLECULES Formic acid Acetaidehyde Ethylenglycal Propylenglycal Butanamide

THE "POISONOUS" MOLECULES Acetylene Hydrogen cyanide Acetonitrile Farmaldehyde

THE "SMELLY AND COLOURFUL" Sulphur Disulphur Trisulphur Tetrasulphur Methanethiol Ethanethiol Thioformaldehede

THE MOLECULE IN DISGUISE Gyanogen

Questions

Do cometary (and Solar System) organics have an interstellar origin?

Chemical processes in the Interstellar Medium

Gas-grain astrochemical models have been developed for several decades to understand the presence in high quantities of these organics

Gas phase chemistry

Dissociation, ionisation, ion-neutral, neutral-neutral reactions (KIDA, or UMIST chemical databases)

Gas-grain processes

Astrochemical model predictions

Observed organic molecules can be formed on interstellar ices and/or in the gas phase

Abundance underprediction of key molecules

Abundance ratios of several bright organic molecules (HCOOCH₃, CH₃OCH₃, or CH₃CN) are still underpredicted by grain surface models

Data compiled in Taquet et al. (2015)

Impact of proton-transfer reactions

Proton-transfer reactions involving NH₃ increase gas-phase abundances of COMs by one-to-two orders of magnitude

- Highly exothermic proton transfer reactions between protonated COMs and NH_3 due to higher proton affinity of NH_3 $XH^+ + NH_3 \longrightarrow X + NH_4^+$ (k $\approx 2x10^{-9} \text{ cm}^{3} \text{ s}^{-1}$ for all studied reactions; see Hemsworth et al. 1974)

Taquet, Wirstrom, & Charnley (2016)

Impact of proton-transfer reactions

Proton-transfer reactions involving NH₃ increase gas-phase abundances of COMs by one-to-two orders of magnitude

Without proton-transfer reactions

With proton-transfer reactions

 $n_{\rm H} = 10^7 \text{ cm}^{-3}$, T = 150 K, $\zeta = 3 \times 10^{-17} \text{ s}^{-1}$

Taquet, Wirstrom, & Charnley (2016)

Perspectives: AstroFlt 2 project

1 - Chemical complexity pathways

What is the degree of chemical complexity reached in the ISM ?

A) Constrain the physical and chemical processes in ices with a modelling of laboratory experiments

B) Study the effect of new types of gas phase reactions

2 - Physical evolution and chemistry

Have the cometary and meteoritic molecules an interstellar origin ?

- A) Follow the chemical evolution from dark clouds to disks with dynamical models
- B) Interpret interferometric observations of star-forming regions

Grazie!

The formation of low-mass stars

Codella et al. (2016), Roy et al. (2014), Codella et al. (2014), ALMA et al. (2015) 1) Chemical complexity pathways –

What is the degree of chemical complexity reached in the ISM ?

What are the chemical processes responsible for their formation and destruction ?

2) Physical evolution and chemistry –

Can interstellar molecules survive in the solar nebula / protoplanetary disk ?

Have the cometary and meteoritic molecules an interstellar origin ?

1) Chemical complexity pathways

What is the degree of chemical complexity reached in the ISM ? What are the chemical processes responsible for their formation and destruction ?

A) Constrain the physical and chemical processes in ices

 \rightarrow study the results of laboratory experiments to constrain surface chemical models

Collaborations with F. Dulieu, P. Theulé, S. Ioppolo

B) Study the effect of new types of gas phase reactions

 \rightarrow include ion-neutral reactions in gas-phase chemical networks

 \rightarrow investigate their importance for the formation of complex molecules

Collaborations with S. Charnley, N. Balucani, C. Ceccarelli

2) Physical evolution and chemistry

Can interstellar molecules survive in the solar nebula / protoplanetary disk ? Have the cometary and meteoritic molecules an interstellar origin ?

A) Follow the chemical evolution from dark clouds to disks

→ apply astrochemical model to 2D dynamic model and shock model

Collaborations with D. Harsono, A. Gusdorf, E. van Dishoeck

B) Interpret interferometric observations of star-forming regions

 \rightarrow comparison with ALMA and NOEMA observations carried out in Arcetri

Collaborations with star formation group in Arcetri + C. Ceccarelli, E. van Dishoeck, ...

Bianchi et al. (2017, subm.)

Physical evolution and chemistry

ALMA now allows us to zoom in the inner 100 AU around protostars and show that the molecular emission strongly evolves near the protostar

 \rightarrow evidence for powerful physical processes, such as accretion shock ?

Sakai et al. (2017)

GRAINOBLE: a multiphase astrochemical model

A multiphase model distinguish chemically active ice layers and more inert ice bulks has been developed since my PhD

(Taquet et al. 2012, 2013, 2014, 2016)

Gas phase