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Abstract

We present a methodology for the determination of empirical masses of single stars through the combination of
three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via
granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral
energy distribution, and (iii) the distance via the Gaia parallax. We demonstrate the method using 525 Kepler stars
for which these measures are available in the literature, and show that the stellar masses can be measured with this
method to a precision of ∼25%, limited by the surface-gravity precision of the granulation “flicker” method
(∼0.1 dex) and by the parallax uncertainties (∼10% for the Kepler sample). We explore the impact of expected
improvements in the surface gravity determinations—through the application of granulation background fitting and
the use of recently published granulation-metallicity relations—and improvements in the parallaxes with the arrival
of the Gaia second data release. We show that the application of this methodology to stars that will be observed by
TESS should yield radii good to a few percent and masses good to ≈10%. Importantly, the method does not require
the presence of an orbiting, eclipsing, or transiting body, nor does it require spatial resolution of the stellar surface.
Thus, we can anticipate the determination of fundamental, accurate stellar radii and masses for hundreds of
thousands of bright single stars—across the entire sky and spanning the Hertzsprung–Russell diagram—including
those that will ultimately be found to host planets.

Key words: methods: observational – planets and satellites: fundamental parameters –
stars: fundamental parameters

1. Introduction

Measurements of fundamental physical stellar parameters,
especially mass and radius, are paramount to our understanding
of stellar evolution. However, at present, different physical
prescriptions in stellar evolution models, e.g., winds, mass-loss,
and convective overshoot, predict different radii and tempera-
tures for stars of the same mass, age, and metallicity. Similarly,
stars with different elemental abundance ratios will have
significantly different evolutionary paths in the Hertzsprung–
Russell diagram even if they have the same mass and overall
metal abundance. Thus, placing precise constraints on these
parameters is critical to constraining the wide range of plausible
stellar evolution models.

One notable problem in stellar astrophysics for which
accurate stellar masses and radii are particularly pertinent is
the so-called “radius inflation” of low-mass stars, whose radii
have been found in many cases to be significantly larger than
model-predicted radii at fixed mass Teff by up to 10%
(cf. Birkby et al. 2012; Mann et al. 2015). To make matters
worse, there exists a paucity of isolated M dwarfs with
precisely determined radii in the literature. Moreover, in
sparsely populated areas of the Hertzsprung–Russel (HR)
diagram—e.g., the Hertzsprung gap, wherein intermediate- and
high-mass (M M1.5ZAMS  ☉) stars have ceased core hydrogen
burning but have not yet ignited hydrogen in their shells—
stellar evolution models are poorly constrained. Thus, improv-
ing the precision with which we measure the fundamental
parameters of the few stars in this regime provides the most
promising way of constraining this short-lived phase of stellar
evolution.

A similar issue applies in the case of exoplanet radii and
masses, which depend directly on the assumed radii and masses
of their host stars. The determination of accurate, empirical
masses and radii of planet-hosting stars would in turn enable
the accurate, empirical determination of exoplanet radii.
To date, double-lined eclipsing binaries and stars with

angular radii measured interferometrically and distances
measured by parallax provide the most robustly determined
model-independent stellar radii. The canonical Torres et al.
(2010) sample contains double-lined eclipsing binaries (and α
Centauri A and B) with masses and radii good to better than
3%, but the sample contains only four M dwarfs. Birkby et al.
(2012) lists a few dozen M dwarfs in eclipsing binaries or with
radii known from interferometry, but the uncertainty in the radii
of the stars this sample is as large as 6.4%. Interferometry
provides radii (via angular diameters) to ∼1.5% for AFG stars
(Boyajian et al. 2012a) and ∼5% for K and M dwarfs
(Boyajian et al. 2012b), but this technique is limited to very
bright (and thus nearby) stars. Among young, low-mass pre-
main-sequence stars, there is a severe paucity of benchmark-
quality eclipsing binaries, limiting empirical tests of star
formation and evolution models (e.g., Stassun et al. 2014a).
Moreover, there is strong evidence that magnetic activity
affects the structure of low-mass stars, and can lead to so-called
“radius inflation” of K and M dwarfs of up to 10%–15% that
has yet to be fully captured in stellar models (see, e.g., Stassun
et al. 2012; Somers & Stassun 2017).
A methodology for determining empirical radii of stars using

published catalog data has been demonstrated by Stassun et al.
(2017a) for some 500 planet-host stars, in which measurements
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of stellar bolometric fluxes and temperatures obtained via the
available broadband photometry from GALEX to WISE
permitted determination of accurate, empirical angular dia-
meters, which, with the Gaia DR1 parallaxes, (Gaia Collabora-
tion et al. 2016) permitted accurate and empirical measurement
of the stellar radii. The improved measurements of the stellar
radii permitted an accurate redetermination of the planets’ radii.
In Stevens et al. (2017), we extended this methodology to non-
planet-hosting stars more generally, again utilizing GALEX
through WISE broadband fluxes in order to determine effective
temperatures, extinctions, bolometric fluxes, and thus angular
radii. We were then able to determine empirical radii for
∼125,000 of these stars for which Gaia DR1 parallaxes were
available.

For the transiting planet-host star sample analyzed by
Stassun et al. (2017a), the transit data provide a measure of
the stellar density, and thus the stellar mass via the stellar
radius. This in turn permitted the transiting planets’ masses to
be redetermined empirically and accurately. Fundamentally,
this approach to empirical stellar masses relies—as with
eclipsing binary stars—on the orbit and transit of another
body about the star. The fundamental stellar mass–radius
relationship determined via the gravitational interaction of a
star and another body can leave open the question of whether
the companion has altered the properties of the star in question
(especially in the case of close binary stars). For example,
binary stars and close-in star-planet systems can affect one
anothers’ spin rates and thus activity levels, which can in turn
lead to radius inflation and other effects that differ from the
basic physics of single-star evolutionary models (see, e.g.,
López-Morales 2007; Morales et al. 2008; Privitera
et al. 2016).

In this paper, we seek to develop a pathway to empirical,
accurate masses of single stars. The approach makes use of the
fact that an individual star’s surface gravity is accurately and
independently encoded in the amplitude of its granulation-
driven brightness variations (e.g., Bastien et al. 2013, 2016;
Corsaro & De Ridder 2014; Corsaro et al. 2015; Kallinger et al.
2016)—variations which can be measured with precise light
curve data such as will soon become available for bright stars
across the sky with the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al. 2015) and, later, PLATO; (Rauer
et al. 2014). Combined with an accurate stellar radius
determined independently via the broadband spectral energy
distribution (SED) and the Gaia parallax as described above,
the stellar mass follows directly.

Of course, for stars found to possess planets, such accurate,
empirical stellar masses and radii will permit determination of
the exoplanet radii and masses also. Indeed, applying this
approach to targets that will be observed by the upcoming
TESS and PLATO missions could help to optimize the search
for small transiting planets (see Stassun et al. 2014b; Campante
et al. 2016). Most importantly, empirical stellar masses and
radii determined in this fashion for single stars—without stellar
or planetary companions—should enable progress on a number
of problems in stellar astrophysics, including radius inflation in
low-mass stars, and will provide a large set of fundamental
testbeds for basic stellar evolution theory of single stars.

In Section 2, we describe our methodology and the extant
data that we utilize to demonstrate the method. Section 3
presents our results, including estimates for the expected
precision with which stellar masses may be measured and the

limits of applicability. In Section 4, we discuss the likely
number of TESS stars likely to yield accurate stellar mass
determinations, some example applications of the stellar
masses so determined, as well as some caveats, potential
sources of systematic error, and how these might be mitigated.
We conclude with a summary of our conclusions in Section 5.

2. Data and Methods

2.1. Data from the Literature

In order to demonstrate our approach in a manner that is as
similar as possible to what we expect from the upcoming TESS
and Gaia data sets, we draw our sample data from two recent
studies of large numbers of Kepler stars. In particular, we take
as “ground truth” the asteroseismically determined stellar
masses (M) and radii (R), and spectroscopically determined
stellar effective temperatures (Teff ), from Huber et al. (2017).
Those authors also report stellar bolometric fluxes (Fbol) and
angular radii (Θ) measured via the broadband SED method laid
out in Stassun & Torres (2016a) and Stassun et al. (2017a).
Finally, we take the stellar surface gravities ( glog ) for these
stars as determined via the granulation “flicker” method from
Bastien et al. (2016). Together, these sources provide a sample
of 675 stars for demonstration of the methodology explored in
this work.

2.2. Summary of Methodology

2.2.1. Stellar Radius via Spectral Energy Distributions

At the heart of this study is the basic methodology laid out in
Stassun & Torres (2016a) and Stassun et al. (2017a), in which a
star’s angular radius, Θ, can be determined empirically through
the stellar bolometric flux, Fbol, and effective temperature, Teff ,
according to

F T , 1bol SB eff
4 1 2sQ = ( ) ( )

where SBs is the Stefan–Boltzmann constant.
Fbol is determined empirically by fitting stellar atmosphere

models to the star’s observed SED, assembled from archival
broadband photometry over as large a span of wavelength as
possible, preferably from the ultraviolet to the mid-infrared. Teff
is ideally taken from spectroscopic determinations when
available, in which case the determination of Fbol from the
SED involves only an estimate of the extinction, AV, and an
overall normalization as free parameters.
If Teff is not available from spectroscopic determinations,

then Teff may also be determined from the SED as an additional
fit parameter, as we showed in Stevens et al. (2017). Figure 1
(from Stevens et al. 2017) shows the performance of our
procedures when we also determine Teff as part of the SED
fitting process (here using LAMOST, RAVE, and APOGEE
spectroscopic Teff as checks). Our SED-based procedure
recovers the spectroscopically determined Teff , generally to
within ∼150K. It does appear that our method infers an excess
of stars with Teff >7000 K (Figure 1, bottom), suggesting
somewhat larger Teff uncertainties of ∼250K for stars hotter
than about 7000K.
For the purposes of this demonstration study, we utilize only

Teff determined spectroscopically (Huber et al. 2017). As a
demonstration of our SED fitting approach, in Stassun et al.
(2017a) we applied our procedures to the interferometrically
observed planet-hosting stars HD189733 and HD209458
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reported by Boyajian et al. (2015). Our SED fits are reproduced
in Figure 2 and the Θ and Fbol values directly measured by
those authors versus those derived in this work are compared in
Table 1, where the agreement is found to be excellent and
within the uncertainties.

The examples in Figure 2 represent cases where the stellar
Teff was drawn from spectroscopic determinations (via the
PASTEL catalog; Soubiran et al. 2016). In this study, the Teff

Figure 1. Spectroscopic vs. best-fit SED-based Teff (labelled IRFM in the plots)
using stars in LAMOST (top), RAVE (middle), and APOGEE (bottom)
catalogs as checks, showing that our procedures are able to recover the
spectroscopically determined Teff , generally to within ∼150K. The peaks in the
RAVE histogram correspond to the grid resolution of synthetic spectra used by
the RAVE pipeline. Reproduced from Stevens et al. (2017).

Figure 2. SED fits for the stars HD189733 and HD209458, for which
interferometric angular radii have been reported (Boyajian et al. 2015) as a
check on the Θ and Fbol values derived via our methodology. Each panel shows
the observed fluxes from GALEX to WISE vs. wavelength (in μm) as red error
bars, where the vertical error bar represents the measurement uncertainty and
the horizontal “error” bar represents the width of the passband. Also in each
figure is the fitted SED model including extinction, on which is shown the
model passband fluxes as blue dots. The two SED fits have goodness-of-fit 2cn
of 1.65 and 1.67, respectively. The Θ and Fbol comparisons are presented in
Table 1. Reproduced from Stassun et al. (2017a).

Table 1
Comparison of Stellar Angular Diameters (2 ´ Q) and Fbol for Stars with

Interferometric Measurements from Boyajian et al. (2015) vs. the SED-based
Determinations from Stassun et al. (2017a)

Boyajian
et al. (2015)

Stassun et al.
(2017a)

HD189733 2 ´ Q (mas) 0.3848±0.0055 0.391±0.008
Fbol (10−8 erg
s−1 cm−2)

2.785±0.058 2.87±0.06

HD209458 2 ´ Q (mas) 0.2254±0.0072 0.225±0.008
Fbol (10

−8 erg
s−1 cm−2)

2.331±0.051 2.33±0.05
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values we adopt are also spectroscopic, determined via the
ASPCAP pipeline applied to the APOKASC APOGEE-2 high-
resolution, near-infrared spectra of the Kepler field. For future
applications to the TESS stars, the TESS Input Catalog (TIC)
will provide spectroscopic Teff for a large fraction of the target
stars as well as photometrically estimated Teff for the vast
majority of other targets (Stassun et al. 2017b).

As demonstrated in Stassun et al. (2017a), with this
wavelength coverage for the constructed SEDs, the resulting
Fbol are generally determined with an accuracy of a few percent
when Teff is known spectroscopically, though the uncertainty
can be as large as ∼10% when Teff is obtained as part of the
SED fitting (Stevens et al. 2017). Figure 3 shows the fractional
Fbol uncertainty for the sample from Stassun et al. (2017a) as a
function of the goodness of the SED fit and of the uncertainty
on Teff . For stars with Teff uncertainties of 1%, the Fbol
uncertainty is dominated by the SED goodness-of-fit. With the
exception of a few outliers, it was shown that one can achieve
an uncertainty on Fbol of at most 6% for 52 cn , with 95% of
the sample having an Fbol uncertainty of less than 5%. As
discussed in Stassun et al. (2017a), outliers in Figure 3 likely
represent the small fraction of stars that are unresolved binaries
comprising stellar components that simultaneously have
sufficiently different Teff and sufficiently comparable bright-
ness; such binaries are easily screened out via the SED 2cn
metric.

For the purposes of this demonstration study, we require
102c <n and the relative uncertainty on the parallax, s pp , to

be at most 20% (see, e.g., Bailer-Jones 2015, for a discussion).
This leaves a final study sample of 525 stars.

2.2.2. Stellar Surface Gravity via Granulation-driven
Brightness Variations

The granulation-based glog measurements that we use from
Bastien et al. (2016) are based on the “flicker” methodology of
Bastien et al. (2013). That method uses a simple measure of the

rms variations of the Kepler light curve on an 8 hr timescale
(F8), representing the meso-granulation-driven brightness
fluctuations of the stellar photosphere. Importantly, as demon-
strated by Bastien et al. (2013, 2016), the F8 amplitude is
measurable even if the instrumental shot noise is up to
∼5 times larger than the F8 signal itself, so long as the shot
noise as a function of stellar apparent magnitude can be well
characterized. For example, in the Kepler sample analyzed by
Bastien et al. (2016), the F8 amplitude of ∼15p.p.m. for solar-
type dwarfs could be reliably measured in stars as faint as 13th
magnitude in the Kepler bandpass, for which the typical shot
noise was ∼75p.p.m. As described by Bastien et al.
(2013, 2016), removing the shot noise in quadrature from the
directly measured rms allows the F8 amplitude as small as
∼20% of the total rms to be measured with sufficient precision
to permit the stellar glog to be determined with a typical
precision of ∼0.1dex.
The granulation properties can also be extracted from the so-

called “background” signal in the stellar power spectrum, i.e.,
the Fourier transform of the light curve from the time domain to
the frequency domain. This technique was originally proposed
by Rolfe & Battrick (1985) as applied to the Sun, and is now
widely adopted for the analysis of stars observed with Kepler
(e.g., Mathur et al. 2011; Kallinger et al. 2014). It consists of
modeling the granulation signal in the power spectrum through
its individual components, namely that of granulation, the
instrumental photon noise, as well as possible acoustic-driven
oscillations. The fitting process is usually performed by means
of Monte Carlo Bayesian approaches to better sample the
possible correlations arising among the free parameters of the
background model (Corsaro & De Ridder 2014; Kallinger et al.
2014; Corsaro et al. 2015).
The granulation signal in the power spectrum is modeled

using two super-Lorentzian profiles,6 one corresponding to the
timescale of the actual granulation and another to that of the
meso-granulation, the latter representing a reorganization of
the granulation phenomenon at larger spatial scales and longer
temporal scales Corsaro et al. (2017). Each of these
components is defined by two parameters, the amplitude of
the signal (agran for the granulation and ameso for the meso-
granulation) and the characteristic frequency (bgran and bmeso,
respectively). As shown by Kallinger et al. (2014) and Corsaro
et al. (2017), the granulation and meso-granulation parameters
scale linearly with one another, implying that one need only
measure one or the other to fully infer the granulation
properties of the star. The characteristic frequencies of this
signal are tightly related to the surface gravity of the star, as
b b g Tmeso gran effµ µ (Brown et al. 1991). This means that g
can be measured from either bgran or bmeso in the stellar power
spectrum.
This granulation background method is typically used as the

preliminary step in performing the traditional asteroseismic
“peak bagging” analysis (e.g., Handberg & Campante 2011;
Corsaro et al. 2015), in which individual stellar oscillation

Figure 3. Fractional uncertainty on Fbol from the SED fitting procedure as a
function of 2cn and of Teff uncertainty. The vertical line represents the cutoff of

52 cn for which the uncertainty on Fbol is at most 6% for most stars, thus
permitting a determination of R to ≈3%. Points with blue haloes represent
stars with transiting planets. Reproduced from Stassun et al. (2017a).

6 A super-Lorentzian profile is defined as a Lorentzian profile with a varying
exponent, namely an exponent that is not necessarily equal to 2. Such a super-
Lorentzian profile is used to model the characteristic granulation-driven signal
in the Fourier domain of a light curve. A Bayesian model comparison
performed by Kallinger et al. (2014) on a large sample of stars (about 600)
observed with NASA Kepler has shown that the most likely exponent of the
super-Lorentzian profile is 4. This was also adopted by Corsaro et al. (2015) in
the asteroseismic study of a sample of red giant stars, and later on used by
Corsaro et al. (2017) for detecting the metallicity effect on stellar granulation.
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frequency peaks are fitted in the power spectrum. The
traditional seismic approach remains the preferred method
when there is sufficient signal to enable such fine analysis,
because in general it yields the most accurate and precise stellar
parameters. It does, however, in general require brighter stars
that have been observed for enough time, often on the order of
several months, to allow resolving the individual modes of
oscillation. With TESS, it is estimated that a few hundred
planet-hosting red giants and subgiants (and some F dwarfs)
will be amenable to seismic analysis (Campante et al. 2016).

The background modeling technique has been shown to
reach about 4% precision in g using the full set of observations
from Kepler (Kallinger et al. 2016; Corsaro et al. 2017).
Through a Bayesian fitting of the background properties and a
detailed Bayesian model comparison, Corsaro et al. (2017) has
recently shown that stellar mass and metallicity play a
significant role in changing the parameters that define the
granulation-related signal in a sample of cluster red giant stars
observed with Kepler. In particular, the authors detected a
20%–25% decrease in bmeso with an increase in mass of
∼0.5M☉, and a 30%–35% decrease in bmeso with an increase in
metallicity of ∼0.3dex. This also implies that the accuracy in g
from the background modeling can be further improved by
taking into account the mass and metallicity of the stars using,
e.g., the empirical relations of Corsaro et al. (2017).

3. Results

In this section, we summarize the results of our methodology
to determine empirical stellar masses in three steps. First, we
demonstrate the granulation-based glog precision that may be
expected from TESS light curves. Second, we demonstrate the
precision on R that may be expected from SED-based Fbol
together with Gaia parallaxes. Then we demonstrate the
precision on M that may be expected via the combination of

glog and R from the first two steps.

3.1. Expected Precision of Surface Gravity

3.1.1. Flicker

We begin by verifying that the granulation-based glog
fundamentally agrees with that obtained via asteroseismology.
To do this, we show in Figure 4 the comparison of the F8-based

glog from Bastien et al. (2016) versus the seismic glog from
Huber et al. (2017). The agreement is excellent, with an overall
offset of 0.01dex and rms scatter of 0.08dex. This is of course

not surprising, as the F8 method was originally calibrated on
asteroseismic samples (Bastien et al. 2013).
At the same time, this comparison also corroborates the

finding by Corsaro et al. (2017) that the granulation-based glog
determination involves a metallicity dependence. In Figure 4,
we see that by subdividing the sample into a metal-rich subset
and a metal-poor subset, the agreement between the F8-based

glog and the asteroseismic glog improves to as good as
0.05dex. While we do not implement any metallicity
corrections in this demonstration study, in future work we
expect that using, e.g., the empirical metallicity correction of
Corsaro et al. (2017), should improve the accuracy of
granulation-based glog .
The TESS light curves are expected to have a systematic

noise floor of that could be as large as 60ppm (Ricker
et al. 2015), which would dominate the error budget for most
bright stars. Meanwhile, the F8 amplitude of solar-type stars is
≈15ppm (Bastien et al. 2013). As noted above, the F8
amplitude was found to be measurable in the Kepler light
curves even down to ∼20% of the noise. Thus, the solar-type
F8 signal is measurable for noise levels as high as ∼75ppm. In
addition, the F8 method involves averaging the light curve on
8 hr timescale, or 16 frames for the 30 minutes FFI data. For
TESS FFI data, therefore, the 75ppm noise limit corresponds to
a 300ppm per-image noise limit, or approximately 10.5mag in
the TESS bandpass.
This is a significantly brighter limit than was the case for

Kepler; the F8 signal was extracted successfully for Kepler stars
as faint as 14mag (Bastien et al. 2016). We discuss the
implications for the accessible TESS target sample in Section 4.

3.1.2. Granulation Background Modeling

As noted in Section 2, the granulation signal has also been
shown to be measurable via modeling of the so-called
“granulation background” in Fourier space, leading to the
measurement of glog with considerably improved precision
over the F8 method. Here, we present simulated results of such
an approach in the TESS context.
Figure 5 (top row) presents the precision expected for g,

depending on the light curve cadence and on the total light
curve duration (the precision of the background modeling
method is sensitive to these parameters because it is
fundamentally based on fitting the Fourier spectrum). The
figure incorporates the results from Kallinger et al. (2016),
which were based on the Kepler30 minutes and 1 minutes

Figure 4. Comparison of glog obtained via granulation “flicker” (Bastien et al. 2016) vs. those obtained asteroseismically (Huber et al. 2017). The overall agreement
has an rms scatter of 0.08dex. Subdividing the sample into metal-rich and metal-poor improves the agreement to 0.05–0.07dex, as suggested by Corsaro et al. (2017).
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cadences. Those authors extracted the precision on g by using
real Kepler data and by adding noise to the light curve and/or
degrading the total observing time of the data set. We have
used those data here because their methodology closely
resembles that which we used in our analysis of the metallicity
effect on the granulation amplitudes (Corsaro et al. 2017). In
particular, their ACFt parameter is comparable to the bmeso
parameter from the fits presented in Corsaro et al. (2017),
yielding the same precision. Because both analyses depend on
the level of signal-to-noise and on the frequency resolution of
the power spectrum in the same way, we can map the Kallinger
et al. (2016) Kepler results onto the simulated TESS data.

The short-cadence case represents the convection-driven
oscillations of a solar-type main-sequence star, having

1000 Hzmaxn m , and can be considered appropriate also for
stars up to the subgiant regime ( 300max n μHz). The long-
cadence case represents instead a red giant and therefore
applies for stars with 300maxn < μHz (typically 50–200 μHz).
We converted the Kepler magnitudes from the simulations
Kallinger et al. (2016) into Cousins I-band (IC) as comparable
to the TESS instrument by taking into account the ∼10 times
higher noise level expected in the power spectra for a star
observed by TESS. This translates into a shift in magnitude (for

a given signal-to-noise ratio) to 5mag brighter for TESS
targets.
In order to achieve a precision that is better than what is

achievable with the F8 method, we can require a precision of
∼0.04dex in glog or ∼10% in g. To satisfy this condition, we
require I 4.7C < for 30 minutes cadence, and I 4.3C < for
2 minutes cadence, for a 27 day observation. Similarly we have
I 6.6C < for 30 minutes cadence, and I 5.4C < for 2 minutes
cadence, for a 351 day observation. Note that as the apparent
magnitude increases, the 30 minutes cadence precision shows a
less steep rise compared to the 2 minutes cadence; this is the
result of the increase in the amplitude of the granulation signal
with the evolution of the star (the simulated long-cadence case
is a red giant).
As noted by Kallinger et al. (2016), there is no particular

limitation on the detectability of the granulation background
signal, assuming that the timescales stay within the Nyquist
frequency imposed by the cadence. However, for simplicity,
the simulations of Corsaro et al. (2017) required the granulation
amplitude to be at least as large as the photometric noise. As
noted above, Bastien et al. (2013, 2016) found that the
granulation signal is measurable in practice down to ∼20% of
the photometric noise, which would extend the reach and

Figure 5. Simulated precision on stellar surface gravity, g, from the granulation background modeling technique (e.g., Kallinger et al. 2016; Corsaro et al. 2017)
applied to TESS light curves. Top row: results for 30 minutes (left) and 2 minutes (right) cadence light curves of various durations, requiring the granulation signal to
be at least as large as the photometric noise. The dashed lines correspond to cases with durations typical of the TESS instrument. Bottom row: same as top row, but
now requiring the granulation signal to be only 20% as large as the photometric noise (see Bastien et al. 2013, 2016).
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precision of the granulation background modeling approach to
fainter TESS stars.

The effect of this is shown in Figure 5 (bottom row), again
for both the 30 minutes and 2 minutes cadences and for a range
of light-curve time baselines. Now it becomes possible to
measure g with 10% precision down to ∼6mag for the
30 minutes cadence and down to ∼6.5mag for the 2 minutes
cadence. It is also possible to measure g with a precision
comparable to that of the F8 method (∼20%) down to ≈7mag
for dwarfs/subgiants in the 2 minutes cadence and for red
giants in the 30 minutes cadence. For comparison, it is
estimated that a full asteroseismic analysis can be done for
subgiants (and some dwarf stars) for stars brighter than
∼5mag (see, e.g., Campante et al. 2016). We discuss the
implications for the accessible TESS target sample in Section 4.

3.2. Expected Precision of Stellar Radii

Next, we consider the expected precision on R that may be
achieved through the method of Fbol via broadband SED fitting
together with the parallax from Gaia. Here, we utilize the same
demonstration sample as above, comparing the R inferred
from the SED+parallax against the R obtained
asteroseismically.

Figure 6 (top) shows that the SED+parallax based R agree
beautifully with the seismic R, and the scatter of ∼10% is as
expected for the typical parallax error in this sample of ∼10%.

Figure 6 (bottom) demonstrates that the residuals between R
obtained from the two methods are normally distributed as
expected. However, there is a small systematic offset apparent.

Applying the systematic correction to the Gaia DR1 parallaxes
reported by Stassun & Torres (2016b) effectively removes this
offset. The spread in the residuals is almost exactly that
expected for the measurement errors (1.1σ, where σ represents
the typical measurement error).

3.3. Expected Precision of Stellar Masses

Finally, we consider the expected precision on M that may
be achieved through the combination of the granulation-based

glog with the SED+parallax based R. Again, we utilize the
same demonstration sample as above, comparing the M

inferred from the above results against the asteroseismically
determined M.
Figure 7 (top) shows the direct comparison of M from the

two methods. The mass estimated from the SED+parallax
based R (with parallax systematic correction applied) and
F8-based glog compares beautifully with the seismic M. The
scatter of ∼25% is as expected for the combination of 0.08dex

glog error from F8 and the median parallax error of ∼10% for
the sample.
The M residuals are normally distributed (Figure 7, middle),

and again the spread in the residuals is as expected for the
measurement errors. The M uncertainty is dominated by the
F8-based glog error for stars with small parallax errors and
follows the expected error floor (Figure 7, bottom, black). The
M precision is significantly improved for bright stars if we
instead assume the glog precision expected from the granula-
tion background modeling method of Corsaro et al. (2017). For
parallax errors of less than 5%, as will be the case for most of

0

Figure 6. Comparison of stellar radii obtained from SED+parallax vs. stellar radii from asteroseismology. Top panel: direct comparison. Bottom panel: histogram of
differences in units of measurement uncertainty; a small offset is explained by the systematic error in the Gaia DR1 parallaxes reported by Stassun & Torres (2016b).
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the TESS stars with Gaia DR2, we can expect M errors of less
than ∼10%.

4. Discussion

The primary goal of this paper is to explore the upcoming
potential of TESS and Gaia, together with large archival
photometric data sets—from the ultraviolet to the mid-infrared
—in order to make accurate stellar radius and mass measure-
ments for large numbers of stars—especially single stars—
across the sky. Indeed, this will enable precise testing of
evolutionary models for single stars across the H–R diagram,
including the ability to fully characterize and understand the

role of magnetic activity on stellar radius inflation, and many
other areas of stellar astrophysics that depend on the accuracy
of stellar models. Stellar models are the main tools for
determining the masses and ages of most stars—including the
determination of the stellar initial mass function and the star
formation history of the galaxy.
Empirical and accurate determinations of fundamental radii

and masses for large numbers of stars across the H–R diagram
will inevitably lead to improvements in the stellar models,
which rely on empirical measurements of basic stellar proper-
ties for calibration. At the same time, a secondary benefit is to
further enable the characterization of extrasolar planets, whose
properties depend on knowledge of the host-star properties,

Figure 7. Top panel: comparison of M obtained from F8-based glog and SED+parallax based R, vs. M from asteroseismology. Middle panel: histogram of the
residuals from top panel. Bottom panel: actual M precision vs. parallax error for glog measured from F8 (black) and the same but assuming improved glog precision
achievable from granulation background modeling (Corsaro et al. 2017) applied to TESS data (red). Symbols represent actual stars used in this study; solid curves
represent expected precision floor based on nominal glog precision (0.08 dex from F8, 0.02 dex from granulation background).
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which is of course a main objective of the TESS and PLATO
missions.

In this section, we discuss the estimated yield of accurate,
empirical R and M via the methods laid out in this work,
discuss some example applications of such a large sample of
empirical stellar properties, and lastly consider some caveats
and limitations of the approach developed here.

4.1. Estimated yield of Stellar Radii and Masses

We begin by estimating the number of stars in the TIC and in
the TESS Candidate Target List (CTL) to which we may apply
our procedures from Stassun & Torres (2016a), Stassun et al.
(2017a), and Stevens et al. (2017) in order to obtain R.

As described in Section 2, this involves measuring Fbol and
angular radius via the broadband SED, constructed from
GALEX, Gaia, 2MASS, and WISE—spanning a wavelength
range 0.15–22μm—supplemented with broadband photo-
metric measurements at visible wavelengths from Tycho-2,
APASS, and/or SDSS. With the addition of the Gaia DR2
parallax, the angular radius then yields R.

For the M determination via the granulation-based glog
measurement, we require the stars to be cool enough to possess
a surface convection zone, i.e., Teff6750K. For the F8-based
granulation measurement, we also exclude red giants, given
that method’s range of applicability (i.e., glog 3; Bastien
et al. 2013, 2016). Finally, using the estimated flux
contamination of nearby sources as provided by the TIC
(Stassun et al. 2017b), we select stars whose total estimated
flux contamination is less than 10%, to avoid stars whose SED
fitting and/or granulation signals may be compromised by the
presence of other signals.

As shown in Table 2, accurate and empirical measures of R
should be attainable for nearly 100 million stars possessing
Gaia parallaxes and for which SEDs can be constructed from
visible to mid-infrared wavelengths. A subset of these, about
28 million, will also have GALEX ultraviolet fluxes which,
while helpful especially for hot stars, are not crucial for
obtaining reliable Fbol for most stars (Stassun & Torres 2016a).

As shown in Table 2, we estimate that accurate and empirical
M measurements should be obtainable for ∼300,000 TESS
stars via F8-based gravities. These masses should be good to
about 25% (see Section 3). In addition, we estimate that a
smaller but more accurate and precise set of M measurements
should be possible via the granulation background modeling
method for ∼11k bright TESS stars in the CTL 2 minutes
cadence targets, and for another ∼33k bright TESS stars in the
TIC 30 minutes cadence targets.

4.2. Applications of Fundamental Må and
Rå Measurements with TESS and Gaia

4.2.1. Determination of the Relationships between Radius Inflation,
Activity, and Rotation

One of the major outstanding puzzles in fundamental stellar
physics is the so-called “radius inflation” problem—the peculiar
trend of some stars of mass 1 M☉ to have radii that are
physically larger by∼5%–10% relative to the predictions of state-
of-the-art stellar models. This phenomenon has been discovered in
eclipsing binaries (e.g., López-Morales 2007), statistical studies of
open clusters (e.g., Jackson et al. 2016), on both sides of the fully
convective boundary of 0.35 M☉(e.g., Stassun et al. 2012), and
on both the pre-main-sequence (Stassun et al. 2014a) and main-
sequence (e.g., Feiden & Chaboyer 2012), demonstrating inflation
as a ubiquitous feature of low-mass stellar evolution.
A precise census of the magnitude of radius inflation as a

function of mass, age, and other relevant stellar parameters will
be critical for accurate characterization of exoplanet radii, for
precise age measurements of young star-forming regions, and
for measurements of the stellar initial mass function (e.g.,
Somers & Pinsonneault 2015). Though the term “inflation”
seems to denote some fault of the stars themselves, the clear
implication is missing ingredients in our stellar models.
Therefore, unveiling the true mechanism behind radius inflation
also promises new revelations about the fundamental physics
driving the structure and evolution of stars.
Most radius inflation studies have been carried out with

eclipsing binaries, which are rare and costly to analyze. The
methods outlined in this paper should provide a new avenue for
measuring large samples of stellar radii, from which radius
inflation measures can be readily derived.
The capacity of this methodology to probe the nature of radius

inflation has been demonstrated in Somers & Stassun (2017), who
derived empirical radii for dozens of K-type dwarfs in the Pleiades,
and determined the magnitude of radius inflation exhibited by each
star. They found evidence for a clear connection between rapid
rotation (P 1.5rot < day) and significant levels of radius inflation
(∼10%–20%), providing some insight into the physical processes
at play (see Figure 8). In particular, this preliminary study shows
that radius inflation in low-mass stars is connected to rapid stellar
rotation—probably because rapid rotation drives a stronger
magnetic dynamo—and furthermore provides an empirical
calibration of the effect at an age of 120Myr.
However, the limitations of this sample, namely the small

mass range, the solitary age of the cluster, and the low raw
numbers, precluded a comprehensive calibration of radius
inflation as a function of rotation—this fact has been typical of
studies in the field to date. With the very large number of TESS
stars for which R and M will be measurable (Table 2), this

Table 2
Approximate Numbers of Stars for which R and M Can Be Obtained via the Methods Described in This Paper, According to the Data Available

with Which to Construct SEDs from GALEX, Visible (Gaia, SDSS, APASS, Tycho-2), 2MASS, and WISE

GALEX (UV) Gaia (Visible) 2MASS (near-IR) WISE (mid-IR)

R for TIC stars in Gaia DR-2 28M 97M 448M 311M
M via F8 for TIC stars with T 10.5mag < 16k 339k 339k 332k

M via bmeso for CTL stars with T 7mag < 0.5k 12k 12k 11k

M via bmeso for TIC stars with T 7mag < 1.6k 34k 34k 33k
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state of affairs is set to radically change, enabling a direct probe
of the nature of radius inflation with a sample of unprecedented
size and diversity. In addition, rotation period measurements
for large numbers of TESS stars are available already (Oelkers
et al. 2017) and more will be measurable from the TESS light
curves themselves. Thus, it should become possible to perform
comprehensive studies of radius inflation, tracing its magnitude
along the mass function and throughout the stellar life cycle.

4.2.2. Empirical Determination of Accurate Radii
and Masses of Exoplanets

Accurate, empirical estimates of the radii (Rp) and masses
(Mp) of extrasolar planets are essential for a broad range of
exoplanet science. These parameters yield the bulk density of
an exoplanet, and thus broadly categorize its nature (gas giant,
ice giant, mini-Neptune, rocky planet, etc.). Planet masses and
radii can also provide important insight into both the physics of
planetary atmospheres and interiors, and the physics of planet
formation and evolution. For example, estimates of the masses
and radii of low-mass planets (M M10p  Å) detected via
Kepler have uncovered an apparent dichotomy in the properties
of planets with radii R1.5 Å compared to those larger than this
(Rogers 2015), such that larger planets appear to have
significant hydrogen and helium envelopes whereas smaller
planets appear to be much more similar to the terrestrial planets
in our solar system.

As is well known, in order to reliably estimate Rp and Mp,
one must have an accurate measure of R and M. Up until
now, these observables of the host stars have rarely been
obtained empirically. Instead, most studies have used theor-
etical models and/or empirically calibrated relations between
other observable properties of the star (e.g., main-sequence
R–Teff relations). Stellar evolution models and empirical
relations are reasonably well understood; nevertheless, the
models are subject to uncertainties in input physics and in
second-order parameters (e.g., stellar rotation), and empirical
relations are subject to calibration uncertainties. Such estimates

of stellar parameters, while precise, are therefore not
necessarily accurate. One demonstration of this is KELT-6b
(Collins et al. 2014), where the parameters inferred using the
Yonsei-Yale model isochrones disagreed by as much as 4s
relative to the Torres et al. (2010) empirical relations, likely due
to the fact that neither the isochrones nor the empirical relations
are well-calibrated at low metallicities.
In Stassun et al. (2017a), we developed a methodology that

combines empirical measurements of R—obtained using the
method described in Section 2—with empirical observables of
transiting exoplanets (such as the transit depth, trd ) to
empirically determine Rp and Mp (see Figure 9). The Stassun
et al. (2017a) analysis used only direct, empirical observables
and included an empirically calibrated covariance matrix for
properly and accurately propagating uncertainties.
In particular, for transiting planets we determine the stellar

density, r , from the transit model parameter a R and the

orbital period, P, through the relation a R
GP

3 3
2 r = p ( ) .

Combining r with the empirically determined R provides a
direct measure of M akin to that obtained via glog as
described in Section 2. From the empirically calculated R, Rp

follows directly via R Rp tr d= . Similarly, from the
empirically calculated M, Mp follows directly via

Figure 8. Adapted from Somers & Stassun (2017); a comparison between the
rotation period of Pleiades stars and their fractional height above appropriately
aged stellar isochrones from Bressan et al. (2012). Pleiads rotating slower than
1.5days show good agreement with predictions, but faster rotating stars are
systematically larger by on average 10%–20%. The cyan squares shows the
average RD among the slower and faster stars, divided at 1.5days. The trend is
statistically significant according to Kendall’s τ and Spearman’s ρ coefficients.
This suggests that rapid rotation drives radius inflation, perhaps through the
influence of correlated starspots and magnetic activity.

Figure 9. Distributions of fractional uncertainties on Rp (top) and Mp (M isinp

for the RV planets) (bottom) determined from the empirical R and other direct
observables. Transiting planets are represented in blue in the right panel.
Reproduced from Stassun et al. (2017a).
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- ( ) , where e is the orbital eccen-
tricity and KRV is the orbital RV semi-amplitude. Of course, it
is also possible to empirically measure Mp for non-transiting
(i.e., radial-velocity) planets by again using the empirical R
together with the granulation-based glog to measure M (see
Figure 9(b)).

Stassun et al. (2017a) achieved a typical accuracy of ∼10%
in Rp and ∼20% in Mp, limited by the Gaia DR1 parallaxes
then available (see Figure 3); with the significantly improved
parallaxes expected from Gaia DR2, the stellar and planet radii
and masses should achieve an accuracy of ≈3% and ≈5%,
respectively (Stassun et al. 2017a).

4.3. Potential Sources of Systematic Uncertainty and
Mitigation Strategy

The methodologies outlined in this paper to determine R
and M for large numbers of stars from TESS and Gaia are
relatively straightforward, and as we have described, essentially
empirical. Nevertheless, as with nearly all measurements made
in astronomy or any other scientific discipline, they cannot in
truth be described as purely empirical. Rather, we must make
some simplifying assumptions and rely on some theory,
models, and extrapolation, at least to some degree.

Here, we discuss some of the potential sources of systematic
uncertainty stemming from our methodology that may affect
the final achievable accuracy. We also outline ways in which
these can be checked and mitigated, using data available now
and in the future.

4.3.1. Bolometric Flux

The first step in our analysis is to estimate the de-extincted
stellar Fbol. As discussed above, this is done by assembling
archival broadband fluxes from a number of sources over a
wavelength range of (at most) 0.15–22μm. We then fit SEDs
derived from stellar atmosphere model to these fluxes, with Fbol
and AV, and, if no spectroscopic estimate is available, Teff , as
free parameters. There are a number of sources of uncertainties
that can be introduced when estimating Fbol in this way.

First, the theoretical SEDs formally depend on glog  and
[Fe/H] as well. However, the shape of the SEDs are generally
weak functions of these parameters, at least over the
wavelengths where the majority of the flux is emitted and for
typical ranges of these parameters. Nevertheless, one can
estimate the magnitude of the error introduced by assuming
fiducial values of glog  and [Fe/H] using stars for which these
parameters have independent measurements (e.g., via high-
resolution spectra). Stassun & Torres (2016a) found the net
effect on Fbol to be of order 1% for the vast majority of stellar
Teff and [Fe/H] encountered in the Milky Way.

Second, the reliance on stellar atmospheres to effectively
interpolate and extrapolate between and beyond the broadband
flux measurements means that the estimate of Fbol is not
entirely model-independent. However, we have tested the
effect of using two different model atmospheres (Baraffe
et al. 1998; Kurucz 2013) for a number of typical cases, and
found the difference in the estimated Fbol from the two models
to be below the typical statistical uncertainty (Stevens
et al. 2017). In the future, Gaia spectrophotometry will enable
a more direct measurement of Fbol in the 0.3–1μm range.

Third, the effect of extinction must be accounted for in order
to estimate the true Fbol. This requires adopting a parameterized

extinction law (e.g., Cardelli et al. 1989), a value for the ratio of
total-to-selective extinction RV, and fitting for the V-band
extinction AV. For most stars to be observed by TESS, leverage
on the extinction primarily comes from comparing the long
wavelength WISE fluxes, which are essentially unextincted for
the majority of the stars of interest, to the broadband optical
fluxes. While we do not expect the extinction law nor RV to
deviate significantly from the standard Cardelli law or
RV=3.1, Stassun & Torres (2016a) test the degree to which
estimates of Fbol change with different assumptions about the
form of the extinction law, again finding the effect to be on the
order of at most a few percent for the full range of RV expected
in the Milky Way. We note that, should it be selected, the
SPHEREx mission (Doré et al. 2014) will provide low-
resolution spectrophotometry between 1 and 5μm, which,
when combined with Gaia spectrophotometry, will enable a
direct measurement of 90%–95% of the flux of late F, G, and
K stars, and, combined with stellar atmosphere models, a
simultaneous estimate of Fbol and the extinction as a function of
wavelength, without requiring a prior assumption about the
form of the extinction law.

4.3.2. Effective Temperature

Formally, Teff is a defined quantity:T L R4eff bol SB
2 1 4
psº ( ) .

However, in our methodology we use Teff as an input to
determine R.
Measurements of Teff from high-resolution stellar spectra

typically rely on stellar atmosphere models, which are
normalized such that the above identity holds. The most
sophisticated of these models do not assume plane-parallel
atmospheres, and thus account for the effect of limb darkening
on the stellar spectra as well. Nevertheless, the choice of the
spectral lines used to estimate Teff can affect its inferred value,
as different spectral lines (and, indeed, different parts of the
lines) originate from different depths in the stellar photosphere.
It is general practice to use those lines that yield values of Teff
that best reproduce the definition above for the model adopted,
as calibrated using standard stars with accurate and precise
angular diameter measurements (see, e.g., Table 1).
There is not much in practice that can be done to measure Teff

with fundamental accuracy, or indeed to avoid the definitional
nature of Teff as a quantity. Comparisons of spectroscopic Teff
obtained by various spectroscopic methods as well as from
independent methods such as colors, generally find systematic
differences in Teff scales on the order of 100K (e.g., Huber
et al. 2017). This is an ∼2% effect for cool stars and ∼1% for
hot stars, which may fundamentally limit the accuracy of R
determinations to a few percent for most stars.

4.3.3. Distance

The Gaia parallaxes are an essential ingredient in our
methodology to determine R and then M. Here, the critical
assumption is that the Gaia parallaxes themselves do not
contain significant systematic uncertainties as compared to the
quoted statistical precisions. Of course, it is well known that
there can be many sources of systematic uncertainty when
measuring parallaxes: unrecognized binary companions, Lucy–
Sweeney bias (Lucy & Sweeney 1971), Lutz–Kelker bias (Lutz
& Kelker 1973), and potential systematic errors in the Gaia
data reduction methodology itself.
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Fortunately, there are methods for independently assessing
the accuracy of the trigonometric parallaxes. For example,
Stassun & Torres (2016b) found a systematic offset of
−0.25mas in the Gaia DR1 parallaxes (Gaia parallaxes
slightly too small) by comparison to distances inferred for a set
of benchmark double-lined eclipsing binaries (see also, e.g.,
Davies et al. 2017).

5. Summary and Conclusions

In this paper, we have sought to lay out a methodology by
which radii (R) and masses (M) of stars may be determined
empirically and accurately with the data that will soon become
available for millions of stars across the sky from TESS and
Gaia. Importantly, as it does not rely upon the presence of an
orbiting, eclipsing, or transiting body, the methodology
provides a path to R and M determinations for single stars.

In brief, the method involves: (1) the determination of R
from the bolometric flux at Earth (Fbol) obtained via the
broadband SED, the stellar Teff obtained spectroscopically or
else also from the SED, and the parallax, (2) the determination
of the stellar surface gravity ( glog ) from the granulation-driven
brightness variations in the light curve, and (3) then M from
the combination of R and glog .

Using a sample of 525 stars in the Kepler field for which the
above measures are available as well asteroseismic gold-
standard R and M determinations for comparison, we find
that the method faithfully reproduces R and M, good to
≈10% and ≈25%, respectively. The accuracy on R is at
present limited by the precision of the Gaia DR1 parallaxes,
and the accuracy on M is at present limited by the precision of
granulation “flicker” based glog . We show that with improve-
ments in the parallaxes expected from Gaia DR2, and with
improvements in the granulation-based glog via Fourier
background modeling techniques (e.g., Corsaro et al. 2017)
as applied to TESS, the accuracy of the R and M

determinations can be improved to ≈3% and ≈10%,
respectively.

From the TIC (Stassun et al. 2017b), we estimate that this
methodology may be applied to as many as ∼100 million TESS
stars for determination of accurate and empirical R, and to as
many as ∼300,000 TESS stars for determination of accurate
and empirical M.
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