

Laboratory simulations of cosmic-ray processing of N₂-containing ices at dark cloud conditions

Gleb Fedoseev,

C. Scirè, G. A. Baratta, M. E. Palumbo

INAF – Osservatorio Astrofisico di Catania, Catania, Italy

Florence, 03 May 2018

e-mail: gleb.fedoseev@inaf.it

Outline

- Introduction and Research Project Goals
- Analysis and Methods
- Results and Discussion
 - Examples of the acquired IR spectra
 - Examples of the obtained kinetic curves
 - HNCO, OCN⁻ and HCN formation yields
- Conclusions and Outlooks

Molecular forges of the Interstellar Medium

Different Stages of Star Formation

1.00

Different Stages of Star Formation

1.0

H₂O, CO, CO₂, CH₃OH, NH₃, CH₄, XCN (OCN⁻)

Öberg et al. 2011, Boogert et al. 2015

- To guide future JWST observations

- By investigating the possibility of utilizing future OCN^{-} and possible HNCO observations as an indicator for N₂ presence in the solid-state

- Or utilizing other possible indicators

What do we know about solid-state N-network?

Why N₂ chemistry is interesting for Us?

Why N₂ chemistry is interesting for Us?

Isocyanic acid and formamide are often suggested to play a role in the formation of prebiotic molecules, *i.e.* peptides

Energetic processing creating insolubale residues!

HNCO

HNCO

HNCO

HNCO

Hydrolysis by liquid water, pH<7 or pH>7

HNCL

HNCO

HNCO

HNCO

Hydrolysis by liquid water, pH<7 or pH>7

HINC

2H

-00

HNCO

Arr?

COC

HNCO

- AH2

COOH

Urso et al. 2017, Accolla et al. (in prep)

AH2

HNCO

Analysis and Method

Pressure: ~10⁻⁹ mbar Temperature: 15-300 K Ion beams: 200 keV H⁺, He⁺, D⁺ etc.

Pressure: ~10⁻⁹ mbar Temperature: 15-300 K Ion beams: 200 keV H⁺, He⁺, D⁺ etc.

Pressure: ~10⁻⁹ mbar Temperature: 15-300 K Ion beams: 200 keV H⁺, He⁺, D⁺ etc.

IR spectroscopy:

- "in situ" ice analysis
- does not damage the ice
- provides kinetic data!

HNCO + M \rightarrow OCN⁻ M⁺ (acid-base interaction)

Fedoseev et al. 2018

Fedoseev et al. 2018

Interpolation to dark cloud conditions

Interpolation to dark cloud conditions

Normalized formation yields obtained by interpolation

	CH ₃ OH:N ₂ (1:1)	CO:CH ₄ :N ₂ (1:1:1)	H ₂ O:CH ₄ :N ₂ (1:1:1)	H ₂ O:CH ₄ :NH ₃ (1:1:1)
Dose eV/16u	0.05	0.05	0.05	0.05
HNCO	5x10 ⁻⁵	3x10 ⁻⁵	5x10 ⁻⁶	-
OCN ⁻	3x10 ⁻⁵	2x10 ⁻⁶	4x10 ⁻⁶	2x10 ⁻⁶
HCN/CN ⁻	7x10 ⁻⁵	1x10 ⁻⁵	1x10 ⁻⁴	3x10⁻ ⁶

Ionization rate: 3x10⁻¹⁷ s⁻¹ Time = 2x10⁵ years Ion irradiation by 1 MeV H⁺ Flux: ~ 1 cm⁻² s⁻¹ (20 nm ice mantle)

Interpolation to dark cloud conditions

Normalized formation yields obtained by interpolation

	CH ₃ OH:N ₂ (1:1)	CO:CH ₄ :N ₂ (1:1:1)	H ₂ O:CH ₄ :N ₂ (1:1:1)	H ₂ O:CH ₄ :NH ₃ (1:1:1)
Dose eV/16u	5	5	5	5
HNCO	5x10 ⁻³	3x10 ⁻³	5x10 ⁻⁴	-
OCN ⁻	3x10 ⁻³	2x10 ⁻⁴	4x10 ⁻⁴	2x10 ⁻⁴
HCN/CN ⁻	7x10 ⁻³	1x10 ⁻³	1x10 ⁻²	3x10 ⁻⁴

Ionization rate: 3x10⁻¹⁷ s⁻¹ Time = 2x10⁷ years

OR

lonization rate: 1.3x10⁻¹⁵ s⁻¹ Time = 2x10⁵ years Ion irradiation by 1 MeV H⁺ Flux: ~ 1 cm⁻² s⁻¹ (20 nm ice mantle)

Astrochemical Implications and Conclusions

- The obtained HNCO/OCN⁻ ratios (see Table 5) can be used as the tracers of N_2 presence

- Co-formation of N_2O in N_2 -containg ices serves as the discriminator between N_2 and NH_3 precursors for OCN⁻ formation.

- Unless formation of OCN⁻ occurs in 'H₂O-rich' ice layer of icy grain mantle, HNCO should always be observed simultaneously with OCN⁻.

Acknowledgments

INAF – Osservatorio Astrofisico di Catania Prof. G. Strazzulla Dr. M. Accolla Dr. G. A. Baratta Dr. P. Modica Msc. R. G. Urso

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n. 664931