

Marie Skłodowska-Curie Actions

A Census of Hard X-ray Magnetic Cataclysmic Variables

Federico Bernardini

INAF – Observatory of Rome

Collaborators:

D. de Martino (NA), K. Mukai (NASA-Goddard), M. Falanga (ISSI-Bern),

N. Masetti (BO), G.L. Israel (RM)

Hard X-ray catalogs

BAT

- 20% of galactic sources are Cataclysmic Variables
- Accreting White Dwarf from low mass companion
- 25% of all CVs are magnetic systems

IBIS/ISGRI+BAT

Magnetic CVs

 If the magnetic field is strong enough to regulate the accretion flow the system is defined Magnetic

Polars $B=10^7-10^8 G$

Intermediate Polars (IPs) B≤10⁶ G (?)

© Mark A. Garlick / space-art.co.uk / strictly no unauthorised use

Polars and IPs

 Accretion: intense X-ray and Optical emission Periodic emission at spin and orbital period

Polars $P_{spin} = P_{orb}$ [hrs]

Intermediate Polars (IPs) P_{spin} [min] < P_{orb} [hrs]

Importance of AWDs

 Close-by, numerous (~1300 CVs), variable Universality of accretion at all scales AWD perfect laboratory

Why do we study magnetic CVs?

• Galactic "diffuse" X-ray emission: hard sources Majority should be mCVs at 10^{30} <L_X< 10^{34} erg/s What are those with L_X ~ 10^{29-30} erg/s ?

Revnivtsev 2006,2009, Hong 2012, Hailey 2016 + more

Why do we study magnetic CVs?

We want understand their evolution
 What is the link between Polars and IPs?

Open questions

- Galactic "diffuse" emission (buldge, disc, center) What are the source producing it exactly? Is there a still uncovered population of low-L CVs?
- Binary evolution
 Do long-period IPs evolve into Polars if similar B?
- Magnetic CVs Why are they hard X-ray emitters? What is the true population of mCVs?
- \rightarrow Volume (or at least flux) limited sample of mCV

XMM-Newton program

- Opt. follow-ups provide suitable candidates
- Unambiguous identification resides in the X-rays

Multi-T optically thin 6.4 keV Fe-line

Bernardini et al. 2012--2017

What do we learn from XMM data?

- X-ray Power Spectra Accretion diagnostic
- $\omega \approx \Omega \rightarrow \text{Stream-fed Polars}$
- $\omega \rightarrow \text{Disc-fed IP}$
- ω - Ω \rightarrow Stream-fed IP
- ω, ω - $\Omega \rightarrow \text{Disc-overflow IP}$
- Pulses vs Energy Absorption/geometry diagnostic
 Ampl. decreases with E -> local photoelectric absorption
 Shape changes -> Additional emission components

• Broad-band energy spectra – Physical Parameters Shock temperature -> M_{WD}

X-ray power spectra of IPs

IGR J1650-3307

IGR J1817-2509

Pulses vs Energy

Amplitude vs E -> localized photoelectric absorption Phasing -> Geometry of the emission components

Other techniques

 Orbital period not easy to detect Phase-fitting technique -> P_{orb}

Some specific result

First long-period fully eclipsing IP

Some specific result

First detection of reflection in mCV

How many CVs are out there?
 20 IPs + 2 Polar + 3 NL + 1 LMXB (transitional)

• What did we learn about IPs?

Why IPs have harder X-ray spectra?
 -> Other parameters than M_{WD} play a role

- Is there a still uncovered population of low-L IPs?
- What is the CV and mCV space density?

These results depend on distance uncertainties Gaia will soon provide accurate CV distance

Conclusions and Perspectives

- XMM program is an ongoing project
- Hard X-ray CVs are dominated by mCV of IP-type
- They increased by 50% thanks to hard surveys
- Hard magnetic CVs have:
 M_{WD} consistent with other CVs
 Maybe harder because moderate B & high dm/dt
- Near Future: census of hard X-ray CVs XMM-Program + Extras -> flux limited sample Unveil the true population of faint sources Widen our knowledge of CVs and binaries