

Osservatorio Astronomico di Trieste Astronomical Observatory of Trieste

The chemical signature of SNIax in the stars of Ursa minor?

Denver, June 04, 2018

Gabriele Cescutti and Chiaki Kobayashi

Chemical evolution models

Denver, June 04, 2018

Stellar evolution

supernova shock

neutrino wind

Nucleosynthesis

Personal chemical evolution models

Ursa minor MDF

Denver, June 04, 2018

Different galaxies have different chemical evolution, typical constrain is the metallicity distribution function. Massive systems have high efficiency; dSph models have low SF efficiencies and present outflows.

MW solar vicinity MDF

model Chiappini+01

Mn nucleosynthesis in different SNIa explosions/progenitors

Delayed-detonation models near-CH mass

 $[Mn/Fe] \sim 0.3 dex$

Delayed-detonation models involve higher densities and they will have an enhanced production of Mn from the contribution of "normal" freeze-out from NSE (as opposed to "alpha-rich").

This is not the case for violent merger or double detonation models.

Sub-CH mass violent mergers (double detonation)

 $[Mn/Fe] \sim -0.2 dex$

The first issue with Manganese...

Iron peak element and its evolution is driven by SNII and SNIa

Results obtained using standard nucleosynthesis for SNe II and SNe Ia with a Chmass deflagration (W7 model)

Denver, June 04, 2018

Cescutti et al. (2008)

MW: Reddy et al 2003 Sagittarius: McWilliam 2003 Sbordone 2007

First solution: SNIa yields metal dependent?

We explored the role of the yields for SNIa, adopting yields depending to the metallicity : $(Z/Z_{\odot})^{0.65}$ (cfr Badenes et al. 2008)

This solution to the Mn problem in Sagittarius was suggested by McWilliam et al. (2003)

Denver, June 04, 2018

Cescutti et al. (2008)

MW: Reddy et al 2003 Sagittarius: McWilliam 2003 Sbordone 2007

Same prescriptions give excellent results for Sculptor, Fornax, Carina and Sextans

ssues :

- Ch-mass deflagration or delayed-detonation, do not produce Mn with a strong metal dependency
- spread of the measured abundances of Mn in this dSph?

Two SNe Ia channels to explain the solar manganese

Using only the sub CH mass SNe Ia, the model cannot reach the solar value: Both SNIa and SNell produce sub solar [Mn/Fe] ratio.

On the other hand only SNIa near-CH produce too high [Mn/Fe] and they are not metal dependent, contrary to sub-CH explosions 0.4

0.2

0.0

- [Mn/Fe] -0.4
 - -0.6
 - -0.8

-1.0

Seitenzahl, GC+ (2013)

Mass ranges of primary/secondary stars at low metallicity

Kobayashi+15

-1.1	-1	-0.7	0.	0.4
N Ia				
0.9	0.9	0.9	0.9	0.8
0.9	1.5	2.0	3.0	3.5
1.8	1.8	1.8	1.8	1.8
1.8	2.6	4.0	5.5	6.0
2.4	2.5	2.8	3.5	3.9
6.9	7.0	7.3	8.0	8.4
N Ia				
0.835	0.835	0.835	0.835	
0.835	1.0	1.3	1.9	
0.835	1.05	1.05	1.05	
1.35	1.9	1.9	1.9	
5.9	6.0	6.3	7.0	
6.9	7.0	7.3	8.0	

Shigeyama+92

Results for Ursa minor only with sub-Ch SNe

CEM with only sub-Ch mass SNe Ia cannot reproduce the observed abundance in Ursa minor (same applies to others dSph galaxies)

data from Ural, GC+15

More SN la channels: SNe l ax

A near CH CO–WD or hybrid CO(Ne) WD (Denissenkov+13) undergoes central carbon deflagration similar to the one of a normal SNe Ia but the carbon deflagration is quenched when it reaches the outer O+Ne layer.

The progenitor WD is only partially burnt and ejected. The SN Ia produce less Ni and it has a fainter luminosity (yields from N5def, Kromer+13, Fink+14)

SNe lax

Meng & Podsiadlowski 14, Kobayashi+15, Kromer+13 +15

Denver, June 04, 2018

Doherty +15

Mass ranges of primary/secondary stars at low metallicity

[Fe/H]	-∞	-2.5	-2.4	-2	-1.1
	5 mm		nor	mal S	N Ia
$m_{ m RG,\ell}$		Sale		-	0.9
$m_{ m RG,u}$		- 3	-	-	0.9
$m_{\mathrm{MS},\ell}$		-	-	-	1.8
$m_{ m MS,u}$		-	. –	-	1.8
$m_{\mathrm{WD},\ell}$		-	-	-	2.4
$m_{ m WD,u}$	hita	a cuito	-	-	6.9
			sub	-Ch S	N Ia
$m_{\mathrm{subCh,RG},\ell}$	-	_	-	-	0.83
$m_{ m subCh,RG,v}$	ARAINA	ETP	-	-	0.83
$m_{ m subCh,MS,\ell}$	0.835				0.83
$m_{ m subCh,MS,t}$	1.35				1.33
$m_{\mathrm{WD},\ell}$	5.9				5.9
$m_{ m WD,u}$	6.9	21 St 19			6.9
	Rose Minis			SN I	ax
$m_{\mathrm{Iax,RG},\ell}$	-	6 8	0.8	V	
$m_{ m Iax,RG,u}$	-	63	1.5	3	
$m_{\mathrm{Iax,MS},\ell}$	-	1, 3	1.6	1	
$m_{ m Iax,MS,u}$	-	1 3	2.9	6	
$m_{\mathrm{WD},\ell}$	-	6, 3	6.34	6	
$m_{ m WD,u}$	-	7 3	7.34	7. >	
		in	sie geting	Link	

The state

-1	-0.7	0.	0.4	
0.9	0.9	0.9	0.8	(c
1.5	2.0	3.0	3.5	
1.8	1.8	1.8	1.8	
2.6	4.0	5.5	6.0	
2.5	2.8	3.5	3.9	•
7.0	7.3	8.0	8.4	
0.835	0.835	0.835		(
1.0	1.3	1.9		
1.05	1.05	1.05		
1.9	1.9	1.9		
6.0	6.3	7.0		(
7.0	7.3	8.0		
0.8		0.8		/
3.0		3.0		
1.6		1.6		
6.5		6.5		
7.0		8.0		
8.0		9.0		

Kobayashi+15

data from Ural,GC+15

Denver, June 04, 2018

New channels of SNe la in Ursa minor model

Metal dependent deflagration channel reproduces the data of Mn, but also the new model with both SNe I ax and sub-Ch

Both are able to reproduce the knee in alpha elements

Problem:

Neutron capture elements present a spread alpha elements do not

data collected in Frebel 2010

Bonifacio+09

Denver, June 04, 2018

Stochastic chemical evolution models

[Fe/H]

Solution: We can reproduce the [Ba/ The volumes in which the ISM is well Fe] spread mixed are discrete. Assuming a SNe bubble as typical volume with a low regime of star formation the IMF is not fully sampled. This promotes spread among different volumes if Ba/Fe] nucleosynthesis of the element is is different among different SNe,

[Si/Fe]

Density plot of long living stars for stochastic model

Cescutti 08 +13,+16

lata from in Placco+14

ansen+12 lansen+16

Cescutti+16

-2.5 -2.0 log N_{stars}

-3

[Fe/H]

-1.5

-3.5

-3.0

Same concept applied to Ursa minor model

Stochastic model for Ursa minor 1 Mn metal dependent from a single degenerate Ch-mass SNe Ia

	0.0
-	-0.6
_	-1.2
-	-1.8
_	-2.4
-	N 840.5 –
_	-3.6
-	-4.2
-	-4.8
-	-5.4
	-6.0

Stochastic model for Ursa minor 2

New model with Ch-mass (SNe lax) & sub-CH mass

0.0

$$-0.6$$

 -1.2
 -1.8
 -2.4
 -2.4
 -3.0
 -3.6
 -4.2
 -4.2
 -4.8
 -5.4
 -6.0

Stochastic model for Ursa minor 3 More data from Carina and Sextans, dSph with similar mass compared to Ursa minor

	0.0
-	-0.6
	-1.2
-	-1.8
_	-2.4
_	–3.0 <mark>s</mark> tars
_	-3.6
-	-4.2
_	-4.8
_	-5.4
	-6.0

Stochastic chemical evolution models

We can study the origin of the spread in chemical abundance space. In this case it is originated by two possible SNe la progenitors: Chandrasekhar-mass & sub-Chandrasekhar mass

Chemical evolution models indicate that at least two SNe Ia channels should be active to reproduce the Mn/Fe ratio on the Sun. Seitenzahl, GC+13

Two different channels in the dSph environments can also be a way to reproduce the observation in Mn and also alpha-elements. Kobayashi+15

In a stochastic chemical evolution model, the presence of two different channels leads to a spread in the [Mn/Fe] vs [Fe/H] space, compatible with the abundance measured in Ursa minor and other dSphs with similar mass. Cescutti&Kobayashi 17

Conclusions

