INTASTE

combining INTerferometry and ASTeroseismology: a new insight on Exoplanet characterisation

ROXANNE LIGI

INAF-Osservatorio Astronomico di Brera Marie Skłodowska-Curie/AstroFIt2 Fellow

AstroFlt2 Meeting Roma - October 23rd

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 664931

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

Introduction

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

- 3 groups of exoplanets
- instrumental bias?

A majority of Super-Earths and mini-Neptunes

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

$$\frac{\Delta F}{F} = \left(\frac{R_P}{R_\star}\right)^2$$

 $\frac{\left(m_p \sin i\right)^3}{\left(M_{\star} + m_p\right)^2} = \frac{P}{2\pi G} K^3 (1-e)^{3/2}$

\rightarrow Depend on R \star and M \star

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

FROM THE FORMATION TO THE CHARACTERISATION OF EXOPLANETS

OUTLINE

Introduction: from the formation to the characterisation of exoplanets

 Characterisation of exoplanetary systems with interferometry

• Getting the most out of it: 55 Cnc

• Formation mechanisms: the challenging case of GJ504

- Some limitations in interferometric measurements
- Conclusion and perspectives

DIRECT MEASUREMENTS OF ANGULAR DIAMETERS

DIRECT MEASUREMENTS OF ANGULAR DIAMETERS

DETERMINATION OF STELLAR MASSES AND AGES

Method: Interpolation of PARSEC stellar models (*Bressan et al. 2012*).

- This corresponds to the approximate likelihood map in the (M_{\bigstar} , age_{\bigstar}) for which each term of the equation $\chi^2 = \frac{(L-L_{\star})^2}{\sigma_{L_{\star}}^2} + \frac{(T_{\text{eff}} T_{\text{eff},\star})^2}{\sigma_{T_{\text{eff},\star}}^2} + \frac{([M/H] [M/H]_{\star})}{\sigma_{[M/H]_{\star}}^2}$ is less than 1, 2, 3 (red, yellow,
- Then, least squares to give a value.
- generally 2 distinct solutions for main sequence stars (degeneracy).

Ligi et al. (2012a, 2016)

FROM STELLAR PARAMETERS TO EXOPLANET PROPERTIES

 \rightarrow Better description of exoplanetary population

Ligi et al. (2012a, 2016)

OUTLINE

Introduction: from the formation to the characterisation of exoplanets

Characterisation of exoplanetary systems with interferometry

• Getting the most out of it: 55 Cnc

• Formation mechanisms: the challenging case of GJ504

- Some limitations in interferometric measurements
- Conclusion and perspectives

55 CNC AND ITS TRANSITING EXOPLANET

A habitable planet around 55 Cancri?

- 55 Cnc e transits its star, and is a super-Earth (Winn et al. 2011, Demory et al. 2011)
- Well studied stars

55 CNC AND ITS TRANSITING EXOPLANET

Stellar Results

Transit duration: $T=2R_{\star}/a\Omega$ Period: $P = 2\pi/\Omega$ $P/T^3 = (\pi^2 G/3) \rho_{\star}$

measure of stellar density p_★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Measure of R_{\star} by interferometry $\rightarrow M_{\star} = (4\pi/3)R_{\star}^{3}\rho_{\star}$ (Ligi et al. 2016)

55 CNC AND ITS TRANSITING EXOPLANET

Stellar Results

- From isochrones: 2 solutions
 - Young solution: $M_{\star} = 0.968 \pm 0.018 M_{\odot}$, $30.0 \pm 3.028 Myrs$
 - **Old solution**: $M_{\star} = 0.874 \pm 0.013 M_{\odot}$, 13.19 ± 1.18 Gyrs
- Using the stellar density + interferometric radius: $M_{\star} = 0.96 \pm 0.067 M_{\odot}$

USING STELLAR DENSITY AND ANGULAR DIAMETERS

Stellar Results

Transit duration: $T=2R_{\bigstar}/a\Omega$ Period: $P = 2\pi/\Omega$ $P/T^3 = (\pi^2 G/3) \rho_{\star}$

measure of stellar density p★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Measure of R_{\star} by interferometry $\rightarrow M_{\star} = (4\pi/3)R_{\star}^{3} P_{\star}$ (Ligi et al. 2016)

From the PDF of R_{\bigstar} and ρ_{\bigstar} , analytic joint PDF of M_{\bigstar} - R_{\bigstar} .

$$\mathcal{L}_{MR\star}(M,R) = \frac{3}{4\pi R^3} \times f_{R_\star}(R) \times f_{\rho_\star}\left(\frac{3M}{4\pi R^3}\right)$$

→ Strong correlation: 0.995!
(Crida, Ligi et al. 2018a,b)
→ Different M★ than von Braun et al. (2011) based on isochrones.

USING STELLAR DENSITY AND ANGULAR DIAMETERS

Stellar Results

Transit duration: $T=2R_{\bigstar}/a\Omega$ Period: $P = 2\pi/\Omega$ $P/T^3 = (\pi^2 G/3) \rho_{\star}$

measure of stellar density p★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Measure of R_{\star} by interferometry $\rightarrow M_{\star} = (4\pi/3)R_{\star}^{3} P_{\star}$ (Ligi et al. 2016)

From the PDF of R_{\bigstar} and ρ_{\bigstar} , analytic joint PDF of M_{\bigstar} - R_{\bigstar} .

$$\mathcal{L}_{MR\star}(M,R) = \frac{3}{4\pi R^3} \times f_{R_\star}(R) \times f_{\rho_\star}\left(\frac{3M}{4\pi R^3}\right)$$

Taking the values of R★ and M★ from Ligi et al. (2016), one gets the large, wrong blue ellipse.

USING STELLAR DENSITY AND ANGULAR DIAMETERS

Planetary Results

Transit duration: $T=2R_{\star}/a\Omega$ Period: $P = 2\pi/\Omega$ $P/T^3 = (\pi^2 G/3) \rho_{\star}$

measure of stellar density p★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Measure of R_{\star} by interferometry $\rightarrow M_{\star} = (4\pi/3)R_{\star}^{3}\rho_{\star}$ (Ligi et al. 2016)

USING STELLAR DENSITY AND ANGULAR DIAMETERS

Planetary Results

Transit duration: $T=2R_{\star}/a\Omega$ Period: $P = 2\pi/\Omega$ $P/T^3 = (\pi^2 G/3) \rho_{\star}$

measure of stellar density p★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Measure of R_{\bigstar} by interferometry $\rightarrow M_{\bigstar} = (4\pi/3)R_{\bigstar}^{3}P_{\bigstar}$ (Ligi et al. 2016)

USING STELLAR DENSITY AND ANGULAR DIAMETERS

Planetary Results

Transit duration: $T=2R_{\star}/a\Omega$ Period: $P = 2\pi/\Omega$ $P/T^3 = (\pi^2 G/3) \rho_{\star}$

measure of stellar density p★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Measure of R_{\star} by interferometry $\rightarrow M_{\star} = (4\pi/3)R_{\star}^{3}\rho_{\star}$ (Ligi et al. 2016)

55 CNC E: INTERNAL COMPOSITION

OCA case: our best constrains on all the parameters.

Crida, Ligi, et al. (2018a,b)

OUTLINE

Introduction: from the formation to the characterisation of exoplanets

Characterisation of exoplanetary systems with interferometry

• Getting the most out of it: 55 Cnc

• Formation mechanisms: the challenging case of GJ504

- Some limitations in interferometric measurements
- Conclusion and perspectives

COMBINING INTERFEROMETRY AND ASTEROSEISMOLOGY: THE SYSTEM OF GJ504

GJ504

GOV bright star High metallicity High activity

One companion detected

at 43.5 au (SEEDS survey) First jovian planet resolved around a solar-type star

Mass of the companion?

Strongly depends on the age of the star!

IRDIS & IFS images (SPHERE/VLT), SHINE survey Bonnefoy, [...], Ligi et al. (2018)

A COMPANION MASS DEPENDING ON THE STELLAR AGE

Kazuhara et al. (2013) → 4 M_{Jup}, 160 Myr (rotational period, activity)

Fuhrmann & Chini (2015) → 25 M_{Jup}, 4.5 Gyr (high-resolution spectroscopy)

d'Orazi et al. (2017) → BD, 2.5 Gyr (differential spectroscopy)

Bonnefoy et al. (2018.) → 1.3 Mjup (21 Myr) or 23 Mjup (4 Gyr) (isochronal age)

Fuhrmann & Chini (2015)

A COMPANION MASS DEPENDING ON THE STELLAR AGE

Different masses call different formation mechanisms:

Brown Dwarf + old system:

Gravitational instability + inward migration

Planet + young system:

Core accretion but challenging given the system properties

In both cases, the companions is in a « desert »!

Bonnefoy, [...], Ligi et al. (2018)

We need the age of the system to unravel the mass of GJ504 b! \rightarrow **Asteroseismology**: several proposals submitted (HARPS-N, ESPRESSO)

OUTLINE

Introduction: from the formation to the characterisation of exoplanets

Characterisation of exoplanetary systems with interferometry

• Getting the most out of it: 55 Cnc

• Formation mechanisms: the challenging case of GJ504

- Some limitations in interferometric measurements
- Conclusion and perspectives

DISCREPANCIES BETWEEN MEASUREMENTS

- Between interferometric measurements
 from different instruments
- Between direct and indirect measurements
- Between interferometric and asteroseismic radii

DISCREPANCIES BETWEEN MEASUREMENTS

- Between interferometric measurements from different instruments
- Between direct and indirect measurements
- Between interferometric and asteroseismic radii

Possible causes

- Calibrators?
 → verification in the sample (ongoing)
- Stellar activity?
 - → comparison with 3D models (coll. A. Chiavassa; planned)

GJ504, Bonnefoy et al. (2018) using COMETS code (Ligi et al. 2015)

OUTLINE

Introduction: from the formation to the characterisation of exoplanets

Characterisation of exoplanetary systems with interferometry

• Getting the most out of it: 55 Cnc

• Formation mechanisms: the challenging case of GJ504

- Some limitations in interferometric measurements
- Conclusion and perspectives

INTERFEROMETRY FOR FAINTER STARS

Stars harbouring transiting exoplanets

Conclusions and perspectives **FUTURE AND ON-GOING WORK**

PLATO 4-11 mag solar type stars

TESS 4-12 mag F5 to M5

CHEOPS V<12 mag Known host stars

Direct measurements

Indirect measurements

Conclusions and perspectives

FUTURE AND ON-GOING WORK

Investigation of transiting exoplanets (same model as 55 Cnc)

- Better characterisation of exoplanetary population
- Keys for planetary formation

Investigation on the limitations of the radius determination

- stellar activity
- bias in the calibrators

Combination of asteroseismology and interferometry

- for individual targets (e.g. GJ504, TESS targets)
- for larger samples (discrepancies)
- testing radius determination: asteroseismology from photometry/spectroscopy, interferometry

Thank you for your attention!

INTASTE

combining INTerferometry and ASTeroseismology: a new insight on Exoplanet characterisation