3rd AstroFIt2 Annual Meeting Rome 15/10/2019

COnstrain STellar physics using all-sky AsteRoseismology

Enrico Corsaro

Marie Sklodowska-Curie Fellow AstroFIt2 INAF - Osservatorio Astrofisico di Catania

Final report

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Nº 664931.

Fellowship on stellar physics

- I was working at CEA Saclay (Paris) when I applied for AstroFIt2
- Applied for 1st call
- Fellowship conducted between October 2016 and September 2019
- I started my contract right after the end of my postdoc at CEA
- Excellent opportunity to come back to my home institution and conduct my research with optimal resources

Scientific Objectives

- Use asteroseismology for a large number of stars (order 10³) from past and ongoing space missions to improve our understanding of:
 - stellar rotation and angular momentum evolution
 - stellar convection
- Couple results with spectroscopic measurements of stellar atmospheric parameters

- Most stars with M ~ 1-3 M_{Sun} oscillate like the Sun
- Oscillations are caused by surface convective motions
- ~100 K stars known today
- Space missions MOST, CoRoT, NASA Kepler, K2, TESS, BRITE
- More to follow: ESA CHEOPS (2020), PLATO (2026) space missions

Acoustic modes (*p modes*) excited by surface convection

© GABRIEL PEREZ DIAZ, IAC (MULTIMEDIA SERVICE)

• Luminosity and RV variations can be measured over time. FFT produces PSD

Global asteroseismic parameters yield stellar mass and radius

$$u_{
m max} \propto g/\sqrt{T_{
m eff}}$$
 $\Delta
u \propto \sqrt{\overline{
ho}}$

Enrico Corsaro - 3rd AstroFIt2 Annual Meeting - Rome 15/10/2019

• Distinguish between RGB and RC stars (core thermonuclear conditions)

© T. KALLINGER

BEDDING ET AL. 2011 NATURE

• Measure core-to-envelope internal rotation in stars

BECK ET AL. 2012 NATURE

NASA Kepler mission

- Launched 2009 End nominal mission in 2013
- Mission devoted to exoplanets discovery
- 150,000 stars observed in the Cygnus Lyra constellations

© NASA AMES RESEARCH CENTER

 Kepler photometric band: 430-890 nm

Photometric observations

Data analysis (1)

- Measuring the oscillation properties requires that the nonseismic signal is properly estimated
- Non-seismic signal requires a complex fit to the stellar PSD
- Model incorporates granulation and meso-granulation variability

https://github.com/EnricoCorsaro/DIAMONDS

Data analysis (2)

- Then extracting oscillation properties from individual modes is very complicated
- Requires adoption of sophisticated numerical approaches
- Fitting models may contain more than 100 free parameters
- Apply my Bayesian inference code DIAMONDS
- DIAMONDS performs efficient fitting of high-dimensional problems and allows Bayesian model comparison for model selection

https://github.com/EnricoCorsaro/DIAMONDS

Some statistics (1)

- Published a total of **22** papers in main refereed journals, of which:
 - 4 as a 1st author
 - 7 as a 2nd or 3rd author
- I have 6 more papers in preparation (2 as 1st author and 4 as co-author), and 1
 paper under review in *Nature* (co-author, already at 2nd iteration)
- Participated in 9 international conferences, with 2 invited and 4 contributed talks, and 2 poster presentations
- Presented 8 invited and 1 contributed seminars during international collaboration visits
- Invited as lecturer to organize and plan a workshop in Nice, France, on Bayesian inference approaches for astrophysics using DIAMONDS: 24 researchers attending from Observatoire Cote d'Azur

Some statistics (2)

- Co-I-ship for INAF Main Stream Project on stellar evolution and asteroseismology with PLATO
- PI-ship for 2 INAF-CHIPP proposals, for HPC facilities to carry out the proposed asteroseismic analysis
- PI-ship for 3 SONG observing proposals, targeting magnetically active red giant stars
- Co-I-ship for 3 SONG observing proposals, focused on the study of metal-poor halo red giant stars
- Co-I-ship for 2 TESS Guest Investigator proposals, for the study of angular momentum evolution in subgiant stars

Stellar sample investigated

About 1500 stars from NASA Kepler

Enrico Corsaro - 3rd AstroFIt2 Annual Meeting - Rome 15/10/2019

Computational resources

- Exploited INAF-CHIPP computing facilities for parallel computing
- About 15 000 multi-dimensional fits performed with DIAMONDS (about 500K core/hours)
- Project selected for an experimental test using new parallel computing Google Cloud and Compute Engine systems for HTC developed at INAF
- Test was successful

Major achievements

1. Angular momentum evolution:

Discovery of imprint of angular momentum evolution from formation epoch on the spin orientation of stars in old open clusters

2. Convection:

Discovery of metallicity effect on the stellar granulation from stars in open clusters

3. Data analysis techniques:

Development of a new cutting edge methodology for the detailed asteroseismology of stars: currently the best approach available!

- Theory (3D MHD simulations) predicts that star and cluster formation process is dominated by turbulent motions
- Molecular cloud's angular momentum during gravitational collapse scrambled by turbulence
- Stars in open clusters are excellent candidates to test this: they share a common origin!
- Past observations did not find evidence of any imprint in cluster stars

nature astronomy

LETTERS PUBLISHED: 13 MARCH 2017 | VOLUME: 1 | ARTICLE NUMBER: 0064

Spin alignment of stars in old open clusters

Enrico Corsaro^{1,2,3,4*}, Yueh-Ning Lee¹, Rafael A. García¹, Patrick Hennebelle¹, Savita Mathur⁵, Paul G. Beck¹, Stephane Mathis¹, Dennis Stello^{6,7} and Jérôme Bouvier^{8,9}

- Applied asteroseismology on cluster red giant stars (about 100 targets)
- Discovery of a strong effect of stellar spin axis alignment
- Must be imprint from the formation epoch
- Angular momentum from the cloud was inherited by stars forming inside. Imprint has lasted for several Gyr!
- New link between asteroseismology and star formation

THE ASTROPHYSICAL JOURNAL, 862:9 (10pp), 2018 July 20 © 2018. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/aac7c4

The Rotational Shear Layer inside the Early Red-giant Star KIC 4448777

Maria Pia Di Mauro¹⁽¹⁾, Rita Ventura², Enrico Corsaro², and Bruno Lustosa De Moura^{3,4}

- Applied my Bayesian techniques for asteroseismology to obtain most detailed study of internal rotation profile to date for a red giant star
- New constraints on the rotation of the H-burning shell!
- Core is rotating nearly uniformly, about 6 times faster than convective envelope

- Stellar granulation is a surface manifestation of convection
- Theory (3D MHD simulations) predicts that metallicity influences the size of the granules, meaning that the granulation variability is affected
- No evidence found before in the literature
- Effect is difficult to detect because coupled with other dependencies on surface gravity, mass, and temperature

A&A 605, A3 (2017) DOI: 10.1051/0004-6361/201731094 © ESO 2017

Astronomy Astrophysics

Metallicity effect on stellar granulation detected from oscillating red giants in open clusters

E. Corsaro^{1, 2, 3, 4}, S. Mathur⁵, R. A. García⁴, P. Gaulme^{6, 7, 8}, M. Pinsonneault⁹, K. Stassun¹⁰, D. Stello^{11, 12, 13}, J. Tayar⁹, R. Trampedach^{5, 13}, C. Jiang¹⁴, C. Nitschelm¹⁵, and D. Salabert⁴

- Applied asteroseismology to cluster red giants and combined with spectroscopy from APOGEE to obtain precise masses and radii
- Detected clear metallicity effect in agreement with theoretical predictions!
- Calibrated new relations to predict metallicity from granulation and oscillation properties

Astronomy & Astrophysics Journal Cover September 2017

(Corsaro, E., et al., 2017, A&A, 605, A3)

THE ASTRONOMICAL JOURNAL, 155:22 (12pp), 2018 January © 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-3881/aa998a

Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia

Keivan G. Stassun^{1,2}, <u>Enrico Corsaro</u>³, Joshua A. Pepper⁴, and B. Scott Gaudi⁵

THE ASTROPHYSICAL JOURNAL, 883:195 (12pp), 2019 October 1 © 2019. The American Astronomical Society. All rights reserved.

Predicting Granulation "Flicker" and Radial Velocity "Jitter" from Spectroscopic Observables

Jamie Tayar^{1,2,6}, Keivan G. Stassun^{3,4}, and Enrico Corsaro⁵

- Applied my scaling relations to obtain accurate masses and predict granulation flicker for stars (helpful for discovery of planets)
- Results obtained for a sample of 2500 field stars observed by NASA *Kepler* and TESS, from MS to RGs

 Improved code performances and with new calibration law

Enrico Corsaro - 3rd AstroFIt2 Annual Meeting - Rome 15/10/2019

frontiers in Astronomy and Space Sciences

Enrico Corsaro*

PERSPECTIVE published: 09 April 2019 doi: 10.3389/fspas.2019.00021

Fast and Automated Oscillation Frequency Extraction Using Bayesian Multi-Modality

- Invited perspective contribution to Frontiers journal for the topic: "The future of Asteroseismology"
- Developed new pipeline termed FAMED (Fast and AutoMated pEak bagging with DIAMONDS)
- Pipeline presented in last yearly conference of TESS and *Kepler* asteroseismic consortia at MIT, Cambridge, July 2019

- Most performant pipeline available for detailed asteroseismology today
- Can process stars from MS to RGs in less than 1 minute!
- Fully automated (first pipeline of this kind) (1 paper in preparation)

Additional studies

4. Magnetic fields:

Investigate the impact of magnetic fields on stellar evolution by observing evolved stars with the spectroscopic instrument SONG

5. Exoplanetary systems:

Exploit detailed asteroseismology on planet-host stars to measure planet densities to test the evolution of the planetary system

6. Oscillations in pre-MS stars:

Using my DIAMONDS code for the search of solar-like oscillations in very young stars. Supervision of master student project.

4 - Magnetic fields

- Stellar Observations Network Group
- I am an associate member
- RV observations of oscillating stars
- Less sensitive to granulation signal
- Better suited to study magnetic activity in stars from its impact on oscillation amplitudes
- PI-ship of 3 SONG proposals for the study of magnetic activity in red giant stars
- Pursuit collaboration with Prof. Pallé, spanish Co-I of SONG

Enrico Corsaro - 3rd AstroFIt2 Annual Meeting - Rome 15/10/2019

4 - Magnetic fields

A&A 628, A106 (2019) https://doi.org/10.1051/0004-6361/201935834 © ESO 2019

Astronomy Astrophysic

Acoustic oscillations and dynamo action in the G8 sub-giant EK Eridani^{*,**}

A. Bonanno¹, E. Corsaro¹, F. Del Sordo^{2,3}, P. L. Pallé⁴, D. Stello⁵, and M. Hon⁵

- Testing the origin of strong magnetic fields observed in red giants
- Exploiting my PI-ship for 3 SONG observing proposals
- Found that a dynamo explanation can exist to sustain strong magnetic fields in stars evolved off the MS

5 - Exoplanetary Systems

nature astronomy LETTERS https://doi.org/10.1038/s41550-018-0684-9

A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system

Aldo S. Bonomo ¹*, Li Zeng ², Mario Damasso¹, Zoë M. Leinhardt³, Anders B. Justesen ⁴, Eric Lopez⁵, Mikkel N. Lund⁴, Luca Malavolta ^{6,7}, Victor Silva Aguirre⁴, Lars A. Buchhave ⁸, Enrico Corsaro ⁹, Thomas Denman ³, Mercedes Lopez-Morales ¹⁰, Sean M. Mills¹¹, Annelies Mortier¹², Ken Rice¹³, Alessandro Sozzetti¹, Andrew Vanderburg ^{10,14}, Laura Affer¹⁵, Torben Arentoft⁴, Mansour Benbakoura^{16,17}, François Bouchy¹⁸, Jørgen Christensen-Dalsgaard ^{10,4}, Andrew Collier Cameron ¹², Rosario Cosentino¹⁹, Courtney D. Dressing²⁰, Xavier Dumusque¹⁸, Pedro Figueira^{21,22}, Aldo F. M. Fiorenzano¹⁹, Rafael A. García ^{16,17}, Rasmus Handberg ⁴, Avet Harutyunyan¹⁹, John A. Johnson¹⁰, Hans Kjeldsen⁴, David W. Latham¹⁰, Christophe Lovis¹⁸, Mia S. Lundkvist ^{4,23}, Savita Mathur^{24,25}, Michel Mayor¹⁸, Giusi Micela¹⁵, Emilio Molinari ^{0,26}, Fatemeh Motalebi¹⁸, Valerio Nascimbeni^{6,7}, Chantanelle Nava¹⁰, Francesco Pepe¹⁸, David F. Phillips¹⁰, Giampaolo Piotto^{6,7}, Ennio Poretti^{19,27}, Dimitar Sasselov¹⁰, Damien Ségransan¹⁸, Stéphane Udry¹⁸ and Chris Watson²⁸

- Using detailed asteroseismology to constrain stellar radius, mass, hence planet density
- Found that two inner planets exist, having same radius but different density: proposed giant impact scenario - First evidence found!

6 - Oscillations in pre-MS stars

Searching for solar-like oscillations in pre-main sequence stars using APOLL0

Can we find the young Sun?

M. Müllner¹, K. Zwintz¹, E. Corsaro², and T. Steindl¹

- A new pipeline based on DIAMONDS developed by my student to search for the oscillations in pre-MS stars (1 paper to be submitted soon)
- DIAMONDS Bayesian model comparison allows to reliably detect the oscillation envelope

Training received

by Dr. Alfio Bonanno

- Use of stellar evolution code CT-GARSTEC at INAF-OACT
- Use of stellar pulsation code GYRE at INAF-OACT
- Exploited INAF-CHIPP computing facilities to compute grids of hundreds of solar models
- Investigated the impact of axion-energy emission on solar oscillation frequencies by applying a Bayesian inference and model comparison approach (1 paper in preparation)

Extras

- Participated in ESA PLATO preparation activities for development of a pipeline for automated fitting of stellar oscillations from MS to SG
- Important participation to be in the consolidating community devoted ESA PLATO
- I applied my first development of the new fitting methodology, which set the basis to the subsequent development of FAMED
- Test performed on about 40 simulated datasets, with 90% accuracy reached
- Participated in several projects conducted in the framework of NASA TESS asteroseismology: targeting both exoplanet host stars and red giants
 - I have already 2 papers published using my Bayesian techniques for NASA TESS exoplanet hosts

NASA TESS

Ongoing & future plans

- Winner of INAF 2019 young researchers competition: will start a new position as permanent staff researcher at INAF-OACT on 4/11/2019
- Already submitted ERC-STG-2020 proposal (deadline October 16 2019) focusing on stellar physics
- Work plans:
 - finalize the FAMED pipeline
 - apply FAMED to the stars investigated during the fellowship
 - apply FAMED to ESA PLATO simulated data for new analysis
 - extend study of stellar internal rotation to thousands of stars
 - analysis on a sample of 100 SG observed in TESS GI proposal Cycle 1 (observations ended up recently) to study internal angular momentum evolution

Thank you!

Enrico Corsaro