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More than 4000 exoplanets known 
→ revolution for planet formation 
theories 
→ search for other habitable 
(habited) worlds. 

Relative uncertainty on planetary 
parameters (mass & radius) 
generally huge. 
→ difficulty in characterizing the 
exoplanets. 



Gas: H, He → When?

Ice  → Where?

Silicates 

Metals

Dorn et al. (2015)
Valencia et al. (2007)
CHEOPS Redbook
PLATO Science Managment Plan (2017)

Formation? 
Habitability? 
Diversity?
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Need 3-5% precision on Mp and Rp to infer 
the internal structure of a planet, and 
thus constrain its nature and origin.
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Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.

Fulton et al. (2017)

Ex: The « evaporation valley » or « Fulton 
gap » observed in the distribution of 
planetary radii.  
→ Super-Earths ≠ Mini-Neptunes ? 
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→ Rp and Mp depend critically on R★ and M★
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Transit method Radial velocity measurements

In many cases, these ratios are better known than the stellar parameters. Often, the stellar 
mass and radius are derived through stellar evolution models.  
→Precise, but questionable accuracy (see later)... 

INTRODUCTION
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0.  Use existing transit and radial velocity data.  

I. Stellar diameters with interferometry 

II. Stellar density from the transit light-curve  

III.  Probability Density Function of R★ and M★, independently 

of stellar models  

IV. Exoplanetary radius and mass Rp and Mp , and planetary 

properties 

V. Conclusions and perspectives 

OUTLINE



small star

big star

contrast = 1

6

contrast = 0
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I. INTERFEROMETRY: PRINCIPLES

Observation of a star with 2 or more 
telescopes, and combine the light from the 
two apertures  
→ interference fringes. 

Point source → contrast = 1 (Young).  

Extended source → several fringe patterns 
which don’t overlap exactly → contrast < 1, 
depends on telescope separation 
(baseline). 

A&A proofs: manuscript no. 36259corr_FinalVersion

from a same data set, and because the uncertainty in the various
papers can be higher than our standard deviation (0.05 dex), we
set the uncertainty on [Fe/H] to 0.1 dex. Concerning the starting
Te↵ value, we used that fitted through the spectral energy distri-
bution (SED; Te↵,SED = 4839K, Sect. 3.2). Since the star is close
by (distance, d = 6.533± 0.038 pc, Tab. 3), we set the reddening
to Av = 0.0 ± 0.01 mag. This value is consistent with the extinc-
tion given by the Stilism (Lallement et al. 2014) 3D map of the
galactic interstellar matter (E(B-V) = 0±0.014) but corresponds
to a smaller uncertainty on the extinction (0.0034 mag).

For each filter, we first computed the linear interpolation of
the LD coe�cients corresponding to the surrounding values of
[Fe/H], log (g) and Te↵ of our star. We then averaged the two
coe�cients coming out from each filter to get a final coe�cient.
Then, we used the LITpro software to fit our data using a lin-
ear LD model while fixing in the model our new LD coe�cient.
This results in ✓LD = 1.035 ± 0.021 mas (2% precision). It has
to be noted that using di↵erent LD laws does not significantly
change the final diameter as we are not sensitive to it in the first
lobe of visibility. If we set Te↵ = 4750K, log (g) = 4.5 dex,
and [Fe/H] = 0.1 dex, a quadratic LD law described by Claret
& Bloemen (2011) yields ✓LD = 1.047 ± 0.022 mas in the R

band (using the LD coe�cients a1,R = 0.5850 and b2,R = 0.1393
given in the table) and ✓LD = 1.033 ± 0.022 mas in the I band
(taking a1,I = 0.4490 and b2,I = 0.1828). Similarly, averaging
a1,R and a1,I coe�cients on the one hand, and b2,R and b2,I on
the other hand, leads to ✓LD = 1.040 ± 0.022 mas, and thus a
value within the error bars of our first estimate. Our determined
angular diameter is smaller than that previously measured with
the CHARA Classic beam combiner (1.106 ± 0.007 mas; Boya-
jian et al. 2012b). Although their visibilities seem more precise,
we stress that we obtain higher spatial frequency data, which
resolves the star better. The angular diameter derived from the
SED ✓SED is also very consistent with our measurement (1.04
mas, see Sect. 3.2).

3. Stellar parameters

The new angular diameter constitutes the basis of our analysis.
It is now possible to determine the other stellar parameters from
our interferometric measurements, and to compare these param-
eters with those derived from stellar evolution models.

3.1. Radius, density, and mass

The stellar radius is generally derived using the distance and an-
gular diameter as follows: ✓LD = 2R?/d. As for the mass, Crida
et al. (2018b,a) showed the importance of using the correlation
between the stellar mass and radius to reduce the possible so-
lutions in the mass-radius plane. We took the same approach to
derive R? and M?. The PDF of R?, called fR? , can be expressed
as a function of the PDF of the observables ✓LD (angular diame-
ter) and ⇡ (parallax), called f✓ and f⇡ respectively. This gives

fR? (R) =
R0

R2

Z 1

0
t f⇡

✓
R0 t

R

◆
f✓(t) dt , (1)

where R0 is a constant (see Crida et al. 2018b, for the proof).
Concerning Gaia parallaxes, Stassun & Torres (2018) have re-
ported that an o↵set of �82 ± 33µas is observed, while Linde-
gren et al. (2018) have provided �30µas. In any case, these o↵-
sets are within the uncertainty of the parallax for HD 219134 and
do not impact significantly our results. As advised by Luri et al.
(2018), we only used the parallax and its error given in the Gaia

Fig. 2: Joint likelihood of the radius and mass of the star
HD 219134. The 9 plain red contour lines separate 10 equal-
sized intervals between 0 and the maximum of Eq. 2.

DR2 catalogue (Gaia Collaboration et al. 2016, 2018), keeping
in mind the possible o↵sets and that for such bright stars, there
might still be unknown o↵sets that DR3 and DR4 will provide.

We found R? = 0.726±0.014 ⇢�, which is a lower value than
that found by Boyajian et al. (2012b, R? = 0.778 ± 0.005 R�).
Our uncertainty on R? is clearly dominated by the uncertainty
on the angular diameter because we took the parallax from Gaia

DR2, which is very precise (0.06%).

The stellar density ⇢? can be derived from the transit du-
ration, period and depth (Seager & Mallén-Ornelas 2003). In
our system, we have two transiting exoplanets. We computed
the stellar density independently for both transits using the data
given by Gillon et al. (2017) and found 1.74±0.22 and 2.04±0.37
⇢� for planets b and c, respectively. We note that the density
coming from the analysis of the light curve for HD 219134 c

is less precise than that of HD 219134 b. This comes from the
transit light curves themselves, which are more complete and
more precise for planet b. Combining both densities, we obtained
1.82±0.19 ⇢�, which we use in the rest of our analysis. We com-
puted the uncertainty following a classical propagation of errors
and found a value close but di↵erent, and with a bigger error bar
compared to that given in Gillon et al. (2017). The joint likeli-
hood of M? and R? can be expressed as

LMR?(M,R) =
3

4⇡R3 ⇥ fR? (R) ⇥ f⇢?

 
3M

4⇡R3

!
, (2)

as described in Crida et al. (2018b) and where f⇢? is the PDF
of the stellar density (Fig. 2). The calculated correlation coe�-
cient between R? and M? is 0.46. Our computation yields M?

= 0.696 ± 0.078 M�, which is consistent with the value deter-
mined directly from log (g) and R? but with a better precision.
For reference, other authors derived 0.763 ± 0.076M� (Boyajian
et al. 2012b) using the relation by Henry & McCarthy (1993),
and 0.81 ± 0.03M� (Gillon et al. 2017) using stellar evolution
modelling. In this latter case, the uncertainty corresponds to the
internal source of error of the model and is thus underestimated.

Article number, page 4 of 13

⟹ Measuring the contrast gives directly 
the angular diameter of the star, θ.  

Stellar radius: R★ = θ/2π . ( π = parallax) 

Probability Density Function f : 
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Spatial frequency (in 108/rad)
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R★ = 0.960 ± 0.018 R⦿ 

Angular diameter measured with the VEGA/CHARA interferometer, 
for two stars hosting transiting exoplanets: 55 Cnc and HD219134.

𝜃 = 0.724 ±0.012 mas 

Ligi et al. (2016)
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
r from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,

P a
G M M

a
GM4
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+
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where the right-hand side assumes that M Mp *� . Dividing
and multiplying the right-hand side of this equation by the
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):

T
R
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2
2

. 4*
p

=
( )

( )

Rearrangement of this equation yields the normalized
semimajor axis a R*:

a
R

P
T

. 5
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r ha a and aq. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2p in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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Transit duration

A fine transit light-curve allows to measure the  
density of the host star!

10 V. Bourrier et al.: The 55 Cnc system reassessed

limb-darkening coe�cients were estimated in the SDSS r’
band (centered at 612.2 nm with a width of 115 nm) using the
EXOFAST calculator 1 (Eastman et al. 2013) and the stellar
temperature, gravity, and metallicity from Table 1. We varied
these parameters within their 1� uncertainties to determine
uncertainties on u1 and u2 (found to be dominated by the
error on the metallicity). The mean and errors so derived (u1
= 0.545±0.008 et u2 = 0.186±0.004) were used as Gaussian
priors in the MCMC. We initialized 300 walkers started at ran-
dom points in the parameter space close to the preliminary fit.
We ran the walkers for 7000 steps and removed a conservative
3000 steps as burn-in. We checked that all walkers converged
to the same solution, before thinning their chains using the
maximum correlation length of all parameters. The final
thinned and merged chain contains about 4000 independent
samples. We set the best-fit values for the model parameters
to the medians of the posterior probability distributions and
evaluated their 1� uncertainties by taking limits at 34.15% on
either side of the median. Results are given in Table 4. The
best-fit transit light curve is shown in Fig. 10. Taking into
account the uncertainty on the stellar radius, the corresponding
planet-to-star radius ratio Rp/R? = 0.0182±0.0002 corresponds
to an optical radius Rp = 1.875±0.029 REarth. We combined the
posterior probability distributions obtained for the mass and
radius of the planet to derive that of its density, and measure ⇢p
= 6.66+0.43

�0.40 g cm�3.

Fig. 10 STIS transit light curve of 55 Cnc e in the visible band.
Fluxes have been corrected for the breathing and long-term
variations in Visit ASTIS (blue), BSTIS (green), and CSTIS (or-
ange). Black points show binned exposures. The red line is the
best-fit transit light curve.

4.3. Analysis of APT transit light curve

The transit of 55 Cnc e was detected from the ground by de
Mooij et al. (2014), using di↵erential photometry obtained
with ALFOSC on the 2.5-m Nordic Optical Telescope. They

1 http://astroutils.astronomy.ohio-state.edu/
exofast/limbdark.shtml

measured a transit depth of 0.0198+0.0013
�0.0014 in the Johnson

BVR bands, which is consistent with our STIS measurement.
We searched for the transit in our normalized APT di↵er-
ential photometry (Sect. 2.2) using the EXOFAST model
described in Sect. 4.2. In a first step, we fitted the transit
depth, transit epoch, and orbital period and fixed all other
properties to the values given in Table 1 and Table 4. The
average Strömgren b and y pass bands (centered at 467 and
547Å , respectively) overlap with the STIS spectral range,
and we consider it reasonable to use the limb-darkening
parameters derived in Sect. 4.2 given the precision of the
APT data. Errors on datapoint were set to the dispersion of
the residuals from a preliminary best-fit. We found the transit
at a period P = 0.736547±2⇥10�6 days and epoch T APT

0 =
2 457063.201±0.007 BJDTDB, in good agreement with the
results from space-borne photometry (Table 4). In a second
step we thus fitted the transit depth alone (Fig. 11), all other
properties being fixed to their values in Table 4. We obtained
Rp/R⇤ = 0.0228±0.0023, which is marginally larger (2�) than
the STIS value derived in Sect. 4.2.

Fig. 11 APT transit light curve of 55 Cnc e in the Strömgren b
and y bands. Black points show binned exposures. The red line
is the best-fit transit light curve.

5. Interior characterization of 55 Cnc e

Successive measurements of the mass and radius of 55 Cnc e
have been used to constrain its interior composition, ranging
from a planet with a high-mean-molecular-weight atmosphere
(Demory et al. 2011) to a planet with no atmosphere and a
silicate-rich (Winn et al. 2011) or carbon-rich (Madhusudhan
et al. 2012) interior. Our new estimates of planetary radius
and mass (Table 4) are consistent with previous measurements
by Nelson et al. (2014) and Demory et al. (2016a) (Rp =
1.91±0.08; Mp = 8.08±0.31 MEarth), and their improved pre-
cision allow us carry further the interior characterization of
55 Cnc e. We use the generalized Bayesian inference analysis
of Dorn et al. (2017b) to rigorously quantify interior degener-
acy. We investigate two di↵erent scenarios: a dry interior that
is comprised of gas and rock only, and a wet scenario in which
a non-gaseous water layer is present underneath the gas layer.

2  NATURE ASTRONOMY 1, 0056 (2017) | DOI: 10.1038/s41550-017-0056 | www.nature.com/natureastronomy

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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as derived from spectroscopic analysis1 (see Table  1). We varied 
the internal physics for convection efficiency, possible core extra-
mixing and initial helium abundance. The error budget includes the 
associated uncertainties on the input parameters but is dominated 
by the uncertainty on the initial helium abundance when model-
ling stellar evolution. The uncertainties on convection and extra-
mixing parameters have relatively low contributions. Only old 
stellar ages were obtained (11.0 ±   2.2 Gyr), consistent with the long 
magnetic cycle and the slow rotation inferred for this star14. This 
old age is also consistent with previous works15–17 that favoured an 
age between 6 and 11 Gyr. Compared with this broad age range, our 
smaller uncertainty can be attributed to the highly precise stellar 
radius and temperature constrained by interferometry3 (Table  1) 
that we used as inputs to our stellar evolution modelling, unlike 
these previous works.

We then performed a global MCMC analysis of all our data 
(HARPS-N RVs plus Spitzer photometry, including the initial HD 
219134 b transit light curve1), to get the strongest constraints on 
the parameters of the short-period planets orbiting HD 219134 
(see Methods). A circular orbit was assumed for HD 219134 b, its 
proximity to the star resulting in a computed tidal circularization 
timescale18 of 80 Myr when assuming a tidal quality factor19 of 100, 
corresponding to the maximum value derived for terrestrial planets 
and satellites of the Solar System19. The same computation for planet c  
resulted in a tidal circularization timescale of 2.5 Gyr, so we conser-
vatively left its orbital eccentricity free in our analysis.

Table 1 presents the resulting values and error bars for the system 
parameters, while Fig.  1 shows the light curves corrected for the 
systematics and the best-fit transit models.

As HD 219134 is a well-characterized, bright and nearby star, the 
detection of the transits of its two inner planets makes possible the 
first detailed characterization and comparative study of two massive 
rocky planets orbiting the same star. Notably, an intense RV and 
photometric follow-up could improve the precision on the planets’ 
masses and radii down to the 3% and 1% levels (currently 4.5% and 
3%), respectively, thanks to very well-constrained values of the stel-
lar mass and radius (see Methods). Assuming rocky compositions 
for both planets, which is consistent with our measurements (Fig. 2, 
ref. 20), and applying a semi-empirical mass–radius relation based 
on the Earth’s seismic model21, we infer core mass fractions (CMF) 

of . − .
+ .0 09 0 09

0 16 and 0.26 ±   0.17 for planets b and c, respectively. These 
CMF values have to be compared to a CMF of 0.33 for the Earth21. 
At this stage, we can thus only conclude that our current dataset 
marginally favours a CMF smaller than the Earth’s for planet b.  
With the improved precisions on the planets’ masses and radii men-
tioned above, the errors on their CMF would drop to 5–6%, mak-
ing possible much stronger inferences on their compositions. Still, 
these inferences would rely on the assumptions that both planets 
have negligible volatile contents and atmospheric extents, as larger 
CMFs combined with significant volatile contents and/or extended 
hydrogen-dominated atmospheres could result in the same mea-
sured masses and radii20,22. Fortunately, the host star is small and 
bright enough to make it possible to constrain the atmospheric 
extents and compositions of the planets by transit transmission 
spectroscopy with the Hubble Space Telescope (HST), and, possibly, 
by occultation emission spectroscopy with the James Webb Space 
Telescope (JWST) which is due to launch in 2018 (see Methods).

The theories of formation of short-period planets of a few 
Earth masses fall into two main classes, one assuming a forma-
tion far from the star, outside the snow line, followed by a sig-
nificant inwards migration by gravitational interaction with the 
gas disk23, and the other assuming in situ formation24,25. The latter 
requires the establishment of a very high surface density of dust 
grains in the inner protoplanetary disk. The grains then coagulate 
to form roughly centimetre-sized ‘pebbles’. These are caught by gas 
drag and migrate inwards to the inner edge of the gas disk, where  
they accumulate, and eventually form close-in planets by gravita-
tional instability or core accretion26,27. The two classes of models 
predict different planetary compositions, the former and latter 
favouring, respectively, volatile-rich and volatile-poor composi-
tions28. Very strong constraints on the planets’ compositions could 
thus help to discriminate their origins. However, the large irra-
diation received by the planets during the ~11 Gyr since their for-
mations could make this discrimination a challenging task even  
in that case, as it could have significantly altered their initial  
structures and compositions.

The transiting nature of both HD 219134 b and c increases the 
probability that planets d and f also transit. Using the formalism of 
previous work4, we compute posterior transit probabilities of 13.1% 
and 8.1% for planets f and d, respectively, significantly greater than 

HD 219134 b HD 219134 c
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Figure 1 | Spitzer transit photometry of the planets HD 219134 b and c. Spitzer/IRAC 4.5-μ m time-series photometry for HD 219134, corrected for the 
instrumental effects, unbinned (cyan dots) and binned per 7.2!min!=  !0.01!d (black circles with error bars, each error bar being the standard deviation for the 
bin). For each light curve, the best-fit transit model is superimposed in red. The left and right panels show the transits of, respectively, HD 219134 b and 
HD 219134 c. The photometry is folded on the orbital period of the planets (0!=  !inferior conjunction).

Bourrier et al. (2018) Gillon et al. (2017)

55 Cnc: ρ★ = 1.079 ± 0.005 ρ⦿ (Crida, Ligi et al. 2018) HD219134: ρ★ = 1.82 ± 0.19 ρ⦿ (Ligi et al. 2019) 

→ P/T3 = (π2G/3) ρ★
(Seager & Mallén-Ornelas 2003)

II. STELLAR DENSITY
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M★=(4π/3)R★3ρ★ →

A&A proofs: manuscript no. 36259corr_FinalVersion

from a same data set, and because the uncertainty in the various
papers can be higher than our standard deviation (0.05 dex), we
set the uncertainty on [Fe/H] to 0.1 dex. Concerning the starting
Te↵ value, we used that fitted through the spectral energy distri-
bution (SED; Te↵,SED = 4839K, Sect. 3.2). Since the star is close
by (distance, d = 6.533± 0.038 pc, Tab. 3), we set the reddening
to Av = 0.0 ± 0.01 mag. This value is consistent with the extinc-
tion given by the Stilism (Lallement et al. 2014) 3D map of the
galactic interstellar matter (E(B-V) = 0±0.014) but corresponds
to a smaller uncertainty on the extinction (0.0034 mag).

For each filter, we first computed the linear interpolation of
the LD coe�cients corresponding to the surrounding values of
[Fe/H], log (g) and Te↵ of our star. We then averaged the two
coe�cients coming out from each filter to get a final coe�cient.
Then, we used the LITpro software to fit our data using a lin-
ear LD model while fixing in the model our new LD coe�cient.
This results in ✓LD = 1.035 ± 0.021 mas (2% precision). It has
to be noted that using di↵erent LD laws does not significantly
change the final diameter as we are not sensitive to it in the first
lobe of visibility. If we set Te↵ = 4750K, log (g) = 4.5 dex,
and [Fe/H] = 0.1 dex, a quadratic LD law described by Claret
& Bloemen (2011) yields ✓LD = 1.047 ± 0.022 mas in the R

band (using the LD coe�cients a1,R = 0.5850 and b2,R = 0.1393
given in the table) and ✓LD = 1.033 ± 0.022 mas in the I band
(taking a1,I = 0.4490 and b2,I = 0.1828). Similarly, averaging
a1,R and a1,I coe�cients on the one hand, and b2,R and b2,I on
the other hand, leads to ✓LD = 1.040 ± 0.022 mas, and thus a
value within the error bars of our first estimate. Our determined
angular diameter is smaller than that previously measured with
the CHARA Classic beam combiner (1.106 ± 0.007 mas; Boya-
jian et al. 2012b). Although their visibilities seem more precise,
we stress that we obtain higher spatial frequency data, which
resolves the star better. The angular diameter derived from the
SED ✓SED is also very consistent with our measurement (1.04
mas, see Sect. 3.2).

3. Stellar parameters

The new angular diameter constitutes the basis of our analysis.
It is now possible to determine the other stellar parameters from
our interferometric measurements, and to compare these param-
eters with those derived from stellar evolution models.

3.1. Radius, density, and mass

The stellar radius is generally derived using the distance and an-
gular diameter as follows: ✓LD = 2R?/d. As for the mass, Crida
et al. (2018b,a) showed the importance of using the correlation
between the stellar mass and radius to reduce the possible so-
lutions in the mass-radius plane. We took the same approach to
derive R? and M?. The PDF of R?, called fR? , can be expressed
as a function of the PDF of the observables ✓LD (angular diame-
ter) and ⇡ (parallax), called f✓ and f⇡ respectively. This gives

fR? (R) =
R0

R2

Z 1

0
t f⇡

✓
R0 t

R

◆
f✓(t) dt , (1)

where R0 is a constant (see Crida et al. 2018b, for the proof).
Concerning Gaia parallaxes, Stassun & Torres (2018) have re-
ported that an o↵set of �82 ± 33µas is observed, while Linde-
gren et al. (2018) have provided �30µas. In any case, these o↵-
sets are within the uncertainty of the parallax for HD 219134 and
do not impact significantly our results. As advised by Luri et al.
(2018), we only used the parallax and its error given in the Gaia

Fig. 2: Joint likelihood of the radius and mass of the star
HD 219134. The 9 plain red contour lines separate 10 equal-
sized intervals between 0 and the maximum of Eq. 2.

DR2 catalogue (Gaia Collaboration et al. 2016, 2018), keeping
in mind the possible o↵sets and that for such bright stars, there
might still be unknown o↵sets that DR3 and DR4 will provide.

We found R? = 0.726±0.014 ⇢�, which is a lower value than
that found by Boyajian et al. (2012b, R? = 0.778 ± 0.005 R�).
Our uncertainty on R? is clearly dominated by the uncertainty
on the angular diameter because we took the parallax from Gaia

DR2, which is very precise (0.06%).

The stellar density ⇢? can be derived from the transit du-
ration, period and depth (Seager & Mallén-Ornelas 2003). In
our system, we have two transiting exoplanets. We computed
the stellar density independently for both transits using the data
given by Gillon et al. (2017) and found 1.74±0.22 and 2.04±0.37
⇢� for planets b and c, respectively. We note that the density
coming from the analysis of the light curve for HD 219134 c

is less precise than that of HD 219134 b. This comes from the
transit light curves themselves, which are more complete and
more precise for planet b. Combining both densities, we obtained
1.82±0.19 ⇢�, which we use in the rest of our analysis. We com-
puted the uncertainty following a classical propagation of errors
and found a value close but di↵erent, and with a bigger error bar
compared to that given in Gillon et al. (2017). The joint likeli-
hood of M? and R? can be expressed as

LMR?(M,R) =
3

4⇡R3 ⇥ fR? (R) ⇥ f⇢?

 
3M

4⇡R3

!
, (2)

as described in Crida et al. (2018b) and where f⇢? is the PDF
of the stellar density (Fig. 2). The calculated correlation coe�-
cient between R? and M? is 0.46. Our computation yields M?

= 0.696 ± 0.078 M�, which is consistent with the value deter-
mined directly from log (g) and R? but with a better precision.
For reference, other authors derived 0.763 ± 0.076M� (Boyajian
et al. 2012b) using the relation by Henry & McCarthy (1993),
and 0.81 ± 0.03M� (Gillon et al. 2017) using stellar evolution
modelling. In this latter case, the uncertainty corresponds to the
internal source of error of the model and is thus underestimated.

Article number, page 4 of 25

M★ being an explicit function of R★, 
they are not independent, but 
correlated. 

  

Ex: HD219134: level curves of the 
joint PDF. 
Correlation (M★ - R★) = 0.46  

III. STELLAR MASS AND RADIUS

Ligi et al. (2019)
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Ligi et al. (2016, 2019)
Crida, Ligi et al. (2018a,b)
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●

55 Cnc HD219134

Comparison with Stellar models:  

Provide a small error bar = internal error of the 
model.

Fit (L★ ,Teff ) → M★, R★, age.  

From BASTI isochrones: 2 solutions 
• Young solution: M★ = 0.968 ± 0.018 M⦿, 

30.0±3.028 Myrs 
• Old solution: M★ = 0.874 ± 0.013 M⦿,  

13.19±1.18 Gyrs

For 55 Cnc

We measure: M★ =1.015±0.051 M⦿

III. STELLAR MASS AND RADIUS

⊙
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14% difference

●

55 Cnc HD219134

Comparison with Stellar evolution models:  

Provide a small error bar = internal error of the 
model. 

But depend on many (unknown?) parameters: He 
initial abundance, solar mixture, metalicity, 
rotation, magnetic field, external boundary 
condition, mixing length ... 

‣ We measure M★= 0.696 ± 0.078 M⦿ and ρ★ = 1.82 ± 0.19 ρ⦿  

‣ Models with different input physics give: 
M★ = 0.755 to 0.810 ± 0.04 M⦿  
(or 0.719 with large initial Helium abundance),  
and ρ★ = 1.96 – 2.09 ± 0.22 ρ⦿ . 

For HD219134

We rather use our 
measurements.  

We may lose in precision, 
but we gain in accuracy! 

III. STELLAR MASS AND RADIUS

Ligi et al. (2016, 2019)
Crida, Ligi et al. (2018a,b)
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c=0.54

THE DIVERSITY OF EXOPLANETS

c=0.3
White: our first estimate, with Hipparcos 
parallax + poor transit light-curve. 
Correlation: 0.3. 
→ ρp =1.06±0.13 ρ⊕  

Blue: our second estimate, with Gaia 
parallax + refined HST light-curve and 
radial velocity. Correlation: 0.54.  
→ ρp =1.164±0.062 ρ⊕ = 6421±342 kg.m-3 

IV. MASS AND RADIUS OF THE PLANET 55 CNC  e 

Crida, Ligi et al. (2018a,b)

R. Ligi: Stellar and planetary properties of HD 219134.

conditions from MARCS model atmospheres), and the galactic
value �Y/�Z = 2 derived by Casagrande et al. (2007), which
is also rather close to the Kepler Legacy seismic mean value
(�Y/�Z)seism. This particular model has M? = 0.755±0.040 M�
and an age of 9.3 Gyr. Although this mass estimate is higher than
the mass we derived from interferometry and transit by ⇠ 8%,
the interval of solutions is consistent with our uncertainties. Sim-
ilarly, our radius and density are consistent with those derived
from the model (0.727± 0.017 R�, 1.96± 0.22 ⇢�, respectively).
We point out that pushing the �Y/�Z value from 2. to 3. would
induce a change of mass from 0.755 to 0.719 M�, i.e. closer to
the interferometric measure, but with a change in age from 9.3
to 13.8 Gyr, i.e. the age of the Universe; in our opinion this in-
dicates that �Y/�Z values that are too high are not realistic for
this star.

We point out that, as is well-known in particular in the case of
low-mass stars, the ages of stars are very poorly estimated when
only the H-R diagram parameters and metallicity are known be-
cause of degeneracies in the stellar models (see e.g. Lebreton
et al. 2014; Ligi et al. 2016). Furthermore, other values of the
classical stellar parameters of HD 219134 have been reported in
the literature. To see how these reported values can modify our
results we optimised stellar models on the basis of the Folsom
et al. (2018) results on Te↵ and [Fe/H] and on L? inferred from
the SIMBAD Hipparcos V-magnitude. We obtained a similar
range of masses 0.76�0.79M�, while the models systematically
point towards higher ages 10.2�13.8 Gyr, which is mainly due to
the smaller Te↵ (4756 ± 86K) derived by Folsom et al. (2018). It
is also worth pointing out that, as noted by Johnson et al. (2016),
the very high ages inferred from stellar models commonly found
in the literature for HD 219134 seem to be in conflict with ages
from activity which, although not very precise, span the range
⇡ 3 � 9 Gyr7.

4. Planetary parameters and composition of the

transiting exoplanets

The precise and accurate stellar parameters that we have deter-
mined allow us to infer the parameters of the transiting exoplan-
ets of the system. It is then possible to derive their internal com-
position using an inference scheme, and to verify if they stand in
a dynamical point of view.

4.1. Radius, density, and mass of the two transiting
exoplanets

The two planets HD 219134 b and c transit their host star, and
we can thus derive their properties. We computed the planetary
radius Rp and mass Mp of each planet starting from the PDF of
the stellar mass and radius. As explained by Crida et al. (2018b)
concerning 55 Cnc e, for any Mp and M?, we can derive the as-
sociated semi-amplitude of the RV signal K following Kepler’s
law, and for any pair of Rp and R?, we can derive the associ-
ated transit depth �F. We took the �F, K, and the period P from
Gillon et al. (2017) to calculate the PDF of the planetary mass
and radius following the formula (see Sect. 3.1 of Crida et al.

7 We estimated this age range from the empirical relation relating the
CaII H & K emission index R

0
HK and age derived by Mamajek & Hil-

lenbrand (2008), with the value of R
0
HK measured by Boro Saikia et al.

(2018).

Fig. 4: Joint likelihood of the planetary mass and radius for
planet b (green long-dashed line) and planet c (yellow solid line).
The 9 contour lines separate 10 equal-sized intervals between 0
and the maximum of fp(Mp,Rp). The dashed lines show the iso-
densities corresponding to the mean densities of planets b and
c.

2018b, for more details) :

fp(Mp,Rp) /
"

exp
0
BBBBB@�

1
2

 
K(Mp,M?) � K

�K

!21CCCCCA

⇥ exp
0
BBBBB@�

1
2

 
�F(Mp,M?) � �F

��F

!21CCCCCA

⇥LMR?(M?,R?) dM? dR? .

(5)

From this joint PDF, we compute the densities of both transiting
exoplanets taking into account the correlation between Rp and
Mp (Fig. 4).

The new values of the planetary parameters are given in
Tab. 4. We also added revised minimum masses and semi-major
axes of planets f and d using Gillon et al. (2017) orbital solu-
tions, as they are confirmed by several independent detections.
The radii of planets b and c are 1.500 ± 0.057 and 1.415 ± 0.049
R�, respectively. Because we find that the star is smaller than
initially thought, the two planets appear smaller as well; Gillon
et al. (2017) give Rp = 1.602 ± 0.055 and 1.511 ± 0.047 R�, and
Mp = 4.74 ± 0.19 and 4.36 ± 0.22 M�, for planets b and c, re-
spectively. This enforces the idea that the two planets lie in the
super-Earth part of the distribution of exoplanetary radii set by
Fulton et al. (2017).

Even more interestingly, planet c presents a higher density
than planet b, whereas it has smaller mass and radius. From the
values in Tab. 4, we get ⇢b/⇢c = 0.901 ± 0.157 assuming ⇢b and
⇢c to be independent variables. But ⇢b and ⇢c are slightly corre-
lated as they both depend on the stellar parameters. Estimating
directly the ratio, the stellar parameters simplify out to

⇢b

⇢c

=
Mb/R3

b

Mc/R3
c

=

 
Pb

Pc

!1/3  
�Fc

�Fb

!3/2  
Kb

Kc

!
= 0.905 ± 0.131 , (6)

where Pb and Pc are the orbital periods of the planets; we used a
standard propagation of error. This is a larger di↵erence than be-
tween the Earth and Venus (whose density is 0.944 ⇢�). A better

Article number, page 7 of 25

RV measurements
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55 Cnc e
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Best constrains on all the parameters with  
Original data + Correlation + Abundances

rsolide/Rp=0.97 ± 0.02 
rgaz/Rp = 0.03 ± 0.02 

THE DIVERSITY OF EXOPLANETS

Atmosphere thickness  
= 3% of Rp 

➔ not a good target for 
transmission spectroscopy 

➔ chemistry of the interior 
non necessarily carbon-rich

IV. PLANETS PROPERTIES: 55 CNC  e 

Crida, Ligi et al. (2018a,b)
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PLANET B PLANET C

Radius [R⊕] 1.50 ± 0.06 1.41 ± 0.05

Mass [M⊕] 4.27 ± 0.34 3.96 ± 0.34

Density [ρ⊕] 1.27 ± 0.16 1.41 ± 0.17 

Corr. (Mp - Rp) 0.22 0.23

8 Fulton et al.

Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.

Fulton et al. (2017)

Smaller planets than previous 
estimates 

→ These new radii put the planets on 
the small side of the evaporation 
valley, while they were thought in the 
gap. 

IV. MASS AND RADIUS OF HD219134’S PLANETS 

Ligi et al. (2019)
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PLANET B PLANET C

Radius [R⊕] 1.50 ± 0.06 1.41 ± 0.05

Mass [M⊕] 4.27 ± 0.34 3.96 ± 0.34

Density [ρ⊕] 1.27 ± 0.16 1.41 ± 0.17 

Corr. (Mp - Rp) 0.22 0.23

ρb/ρc = 0.905 ± 0.131 (0.95 for Venus/Earth)  
→ 50 % chance that their densities differ more 
than 2× more than those of Venus and Earth...  
 
The more massive one (b) is the less dense. 
→ Different core/mantle ratio ? Thick gas 
envelope ? Enrichment in refractory elements ?

Bower et al. (2019): a molten mantle is 25% 
less dense than a solid one. Could HD219134 b 
be partially molten ? 

IV. PLANETS PROPERTIES: HD219134 b & c 

Ligi et al. (2019)
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Tidal heating from the host star dissipates energy and circularizes the orbit. 
 
→ Sustainable energy source if and only if the eccentricity is pumped by other planets (ex: Io).  

N-body simulations of the system:  
eb oscillates between 0.005 and 0.037.  

→ tidal heating up to 100 times more than Io!  
HD219134 c: less tidal heating than Io (because  
further from the star). 
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Conclusion 

→ N-body simulations: planet b’s eccentricity is 
excited despite not measurable.  

→ Assuming a dissipation inside this planet 
equivalent to that of Earth, this strongly suggests 
that this planet could be at least partially molten, 
explaining its lower density than its neighbor 
HD219134 c, even if they have identical composition. 

IV. PLANETS PROPERTIES: HD219134 b & c 

Ligi et al. (2019)
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Stellar parameters 

• Should be precise and accurate: R★, ρ★, and M★ directly determined + correlations 

• Direct determination diverges from models → Direct impact on planetary parameters 

Planetary interiors 

• 55 Cnc e:  
Tiny atmosphere (3% of Rp)  
Non necessarily carbon-rich interior 

→ thanks to very precise transit parameters + correlations 

• HD219134 b and c: 
Validation of the Super-Earths natures 
High molten fraction of the mantle of planet b to explain its lower density 

→ need more accuracy on the transit parameters to confirm the different densities 
in general.

THE DIVERSITY OF EXOPLANETSV. CONCLUSION AND PERSPECTIVE
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In the future… 

• Member of the CHARA/SPICA project (Leader of the WP « Exoplanets hosts ») 

• On the CHARA array, 6T interferometer, mag limit = 9 → many targets ahead! 

• The future spatial missions TESS, CHEOPS, PLATO will provide plenty of new bright 
stars hosting transiting exoplanets 

➡ Insights on stellar masses (measurements vs models) → calibrations of stellar 
models 

➡ Refine population of exoplanets → confirmation (or not) of planetary formation 
theories, discovery of new rocky planets habitable for life?

In the near future… 

• Measurements of 4 stars with VEGA/CHARA and analysis with the same method:  
expect some new planetary parameters!  

• Measurement of TESS targets for next semester with VEGA/CHARA + combination with 
asteroseismology! (NOAO proposal; PI Ligi)
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And also direct imaging for exoplanets detection… 

• New data on HD169142 with SPHERE/VLT (Ligi et al. 2018a; Gratton, Ligi et al. 2019 
+ Media INAF) 

• Proposal SPHERE/VLT on the follow-up of TESS targets (1 accepted, 1 submitted;  
PI Desidera): detection of false-positives (see Ligi et al. 2018b) 

• Member of the DSHARP project: search of planets in disks with SPHERE 

• Member of the GAPS project: detection and follow-up of exoplanets with RV

THE DIVERSITY OF EXOPLANETSV. CONCLUSION AND PERSPECTIVE
A&A proofs: manuscript no. PDS70

Table 1. Stellar parameters of PDS 70.Parameter Unit Value
References

Distance pc 113.43±0.52
1

Te↵ K 3972±36
2

Radius R� 1.26±0.15 computed from 2

B
mag 13.494±0.146

3

V
mag 12.233±0.123

3

g0
mag 12.881±0.136

3

r 0
mag 11.696±0.106

3

i0
mag 11.129±0.079

3

J
mag 9.553±0.024

4

H
mag 8.823±0.040

4

Ks mag 8.542±0.023
4

Age Myr 5.4±1.0
this work

Mass M� 0.76±0.02 this work

AV mag 0.05+0.05�0.03 this work
References. (1) Gaia Collaboration et al. (2016, 2018); (2) Pecaut &

Mamajek (2016); (3) Henden et al. (2015); (4) Cutri et al. (2003).
fit as well as the independently determined e↵ective temperature

Te↵ and radius are listed in Table 1. We perform a simultaneous

fit of all these observables. The uncertainties are treated as Gaus-

sians and we assume no covariance between them.

We use a Gaussian prior from Gaia for the distance and a Gaus-

sian prior with mean 0.01 mag and sigma 0.07 mag, truncated at

AV=0 mag, for the extinction (Pecaut & Mamajek 2016). Given

AV , we compute the extinction in all the adopted bands by as-

suming a Cardelli et al. (1989) extinction law. We use a Chabrier

(2003) initial mass function (IMF) prior on the mass and a uni-

form prior on the age. The stellar models adopted to compute

the expected observables, given the fit parameters, are from the

MIST project (Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi

et al. 2016). These models were extensively tested against young

cluster data, as well as against pre-main sequence stars in mul-

tiple system, with measured dynamical masses, and compared

to other stellar evolutionary models (see Choi et al. (2016) for

details). The result of the fit constrains the age of PDS 70 to

5.4 ± 1.0 Myr and its mass to 0.76 ± 0.02 M�. The best fit pa-

rameter values are given by the 50% quantile (the median) and

their uncertainties are based on the 16% and 84% quantile of the

marginalized posterior probability distribution. The stellar pa-

rameters are identical to the values used by Keppler et al. (2018).3. Observations and data reduction
3.1. Observations

We observed PDS 70 during the SPHERE/SHINE GTO program

on the night of February 24th, 2018. The data were taken in the

IRDIFS-EXT pupil tracking mode using the N_ALC_YJH_S

(185 mas in diameter) apodized-Lyot coronagraph (Martinez

et al. 2009; Carbillet et al. 2011). We used the IRDIS (Dohlen

et al. 2008) dual-band imaging camera (Vigan et al. 2010) with

the K1K2 narrow-band filter pair (�K1 = 2.110 ± 0.102 µm, �K2

= 2.251 ± 0.109 µm). A spectrum covering the spectral range

from Y to H-band (0.96–1.64 µm, R� = 30) was acquired simul-

taneously with the IFS integral field spectrograph (Claudi et al.

straints the allowed distance values. As a result, the best fit distance

value reported here from the MCMC posterior draws is identical to the

value provided by the Gaia collaboration.

2008). We set the integration time for both detectors to 96 s and

acquired a total time on target of almost 2.5 hours. The total field

rotation is 95.7�. During the course of observation the average

coherence time was 7.7 ms and a Strehl ratio of 73% was mea-

sured at 1.6 µm, providing excellent observing conditions.
3.2. Data reductionThe IRDIS data were reduced as described in Keppler et al.

(2018). The basic reduction steps consisted of bad-pixel correc-

tion, flat fielding, sky subtraction, distortion correction (Maire

et al. 2016), and frame registration.
The IFS data were reduced with the SPHERE Data Center

pipeline (Delorme et al. 2017), which uses the Data Reduction

and Handling software (v0.15.0, Pavlov et al. 2008) and addi-

tional IDL routines for the IFS data reduction (Mesa et al. 2015).

The modeling and subtraction of the stellar speckle pattern for

both the IRDIS and IFS data set was performed with an sPCA

(smart Principal Component Analysis) algorithm based on Ab-

sil et al. (2013) using the same setup as described in Keppler

et al. (2018). Figure 1 shows the high-quality IRDIS combined

K1K2 image of PDS 70. The outer disk and the planetary com-

panion inside the gap are clearly visible. In addition, there are

several disk related features present, which are further described

in Appendix A. For this image the data were processed with a

classical ADI reduction technique (Marois et al. 2006) to mini-

mize self-subtraction of the disk. The extraction of astrometric
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Fig. 1. IRDIS combined K1K2 image of PDS 70 using classical ADI

reduction technique showing the planet inside the gap of the disk around

PDS 70. The central part of the image is masked out for better display.

North is up, East is to the left.
and contrast values was performed by injecting negative point

source signals into the raw data (using the unsaturated flux mea-

surements of PDS 70) which were varied in contrast and position

based on a predefined grid created from a first initial estimate of

the planets contrast and position. For every parameter combina-

tion of the inserted negative planet the data were reduced with

the same sPCA setup (maximum of 20 modes, protection angle

of 0.75⇥FWHM) and a �2 value within a segment of 2⇥FWHM
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