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Main epochs of discussion

Inflation
Initial rapid expansion of the Universe, generation of primordial
fluctuations

Reionization
During matter dominated phase, the process of ionizing hydrogen, helium
atoms in the intergalactic medium by high energy photons
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Tracing early Universe

Reconstructing primordial Universe



CMB anisotropy map =⇒ Angular power
spectrum (CT

` )

Planck CMB map Angular power spectrum (Planck)

From the map of temperature anisotropy, we obtain the its power
spectrum in angular scales



Primordial power spectrum (Pk) =⇒ Angular
power spectrum (CT

` )

Primordial power spectrum Angular power spectrum (Planck)
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G`k is the radiative transport kernel.



Transport kernel (G`k)
Transport kernel for temperature anisotropy computed using CAMB
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Understanding primordial physics from data

To search for the shape of primordial spectra:

I use 2 approaches:
• The reverse engineering or top down approach:

Directly from the data (say CMB anisotropy), I use different
deconvolution algorithms to trace back or reconstruct the
primordial signal

• Model building and fitting or bottom up approach:

Using proper theoretical/phenomenological models of inflation, I
confront them with the data

Both the approaches have to be used efficiently in order to extract
the most out of the data. Such as, the reconstruction provides
the hints for building models in the shape of the data



Richardson-Lucy algorithm : Origin

This deconvolution iteratively solves for the PPS:

Richardson (1972) and Lucy (1974)

P
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PPS at i+ 1’th iteration is obtained as a correction factor to the i’th
PPS through the deconvolution

2e-09

3e-09

1e-09
 1e-05  0.0001  0.001  0.01  0.1

P
S
(k

)

k in Mpc
-1

Power law best fit



Issues with Planck

Angular power spectra (in different Planck frequencies)

• 5 different spectra for parameter estimation, calculated from combinations of
maps in different frequency channels

• Foreground and calibration effects
• Substantial lensing



Features and error estimation

We generate and use 1000 mock angular power spectra in every Planck
channels. Using 1000 reconstructed spectra we obtain the 68% and 95%
confidence contours
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Inflation

Inflation is rapid expansion of the Universe, driven by presumably a scalar
field, rolling slowly down its nearly flat potential
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Scalar perturbations generated from the fluctuations in the field does not
have strong scale dependence



Towards a theory of features

In order to generate the features indicated by the reconstruction, we need
departure from the strict slow roll inflaton

Start from a faster roll potential and transition to a slow roll
potential or a step in the inflaton potential generates the required
features.

Extensive works on feature model have been carried out We are not the
only ones : Starobinsky-1992; Linde, Sasaki, Tanaka-1999; Adams, Creswell, Easther-2001;
Covi, Hamann, Melchiorri, Slosar, Sorbera-2006; Joy, Sahni, Starobinsky-2008; Jain, Chingangbam,
Gong, Sriramkumar, Souradeep-2009; Mortonson, Dvorkin, Peiris, Hu-2009; Hazra, Aich, Jain,
Sriramkumar, Souradeep-2010; Flauger, McAllister, Pajer, Westphal and Xu-2010; Aich, Hazra,
Sriramkumar, Souradeep-2011; Bousso, Harlow, Senatore-2013; Meerburg, Spergel, Wandelt-2014
......

We were the first to generate a wide class of features in a single
framework of inflaton potential
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Towards a theory - Whipped Inflation
Hazra, Shafieloo, Smoot, Starobinsky, PRL (2014) [Editor’s suggestion]

Whipped Inflation potential

V (φ) = VS(φ) + γVR(φ)

Moderate fast-roll =⇒ strict slow-roll
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In a continuous potential Whipped Inflation provides large scale scalar suppression
(without a running like small scale suppression), low non-Gaussianity. The tensor
amplitude depends on the scale of V (S).



BINGO: One code to solve them

Based on Maldacena 2002 formalism, see Chen et al. 2006-2010 for initial works on
feature model non-Gaussianities

BINGO : BI-spectra and Non-Gaussianity Operator, Hazra, Sriramkumar and Martin,
JCAP 2013; Sreenath, Hazra, Sriramkumar, JCAP 2015

• BINGO solves the scalar field equation for background and the
curvature perturbation equation (Mukhanov-Sasaki equation) for
any canonical scalar field driven inflaton

• Calculates the bispectra for arbitrary triangular configurations [First
public code to calculate the bispectrum from inflation]

• Performs complete numerical calculation without any slow roll
approximations (MPI enabled)

• Easy to fuse with CAMB and COSMOMC for parameter estimation



Features : earlier works
Local features and large scale suppression

Vilenkin, Ford 1982; Powell, Kinney 2006

Mortonson et al. 2009
Hazra, Aich, Jain, Sriramkumar, Souradeep,

JCAP 2010



Features : earlier works

Non-local features : axion monodromy model

Flauger et al. 2009, 2014 Aich, Hazra, Sriramkumar, Souradeep, PRD 2013,
Meerburg et. al. 2013 - 2014



Features from WWI
Classes of features in WWI
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Wiggly Whipped Inflation : Planck 2015
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WWI-c provides ∼ 10 improvement in χ2 fit. This improvement comes from low-`
TEB and high-` E data.

WWI-d provides ∼ 12 − 14 improvement while most of the improvement comes owing
to the inability of standard model in fitting the temperature and polarization datasets
in a combination.

Hazra, Shafieloo, Smoot, Starobinsky, JCAP 2016



Features in the future

With Cosmic Origins Explorer (CORE)-like survey specification

Wiggles Suppression
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• Large scale suppressions can not be detected with high significance
• Some of the intermediate and small scale oscillations can be

detected, if present

Hazra, Paoletti, Ballardini, Finelli, Shafieloo, Smoot, Starobinsky, JCAP 2018



Tracing late times

Reconstructing reionization history



How the Universe got reionized

The common practice is to parametrize the ionized hydrogen
fraction/free electron fraction as a function of redshift

In CMB study usually a Tanh model of nearly-instantaneous reionization
has been used [Planck has used some asymmetric models as well]

Solving the ionization equation by parametrizing ionizing photon emission
and recombination time is another way to model the history

The integrated optical depth constraint that we have till now:

Planck 2018 = 0.054± 0.007



Parametrizing ionized hydrogen

Introduced Poly-Reion (a way to construct the history of reionization)
and explored possible ways the Universe could have been reionized.

Compared to the conventional nearly instantaneous reionization history
we find Planck-2015 prefers an extended history, higher optical depth

First free form history of reionization respecting physical bounds on the free
electron fraction

Constraints on the optical depth
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Poly-reion formalism has been used by different groups,
Villanueva-Domingo et. al. 2018; Millea and Bouchet
2018 (in a modified form) and Planck 2018:
cosmological parameters
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Free form solution

• Why free form solution is important:
• Not biased towards particular phenomenological construct

• Solving ionization equation provides realistic ionization fractions

• Constraints are conservative

• Physical parameters can be obtained in post-process

• Why complete CMB data is needed:
• Correlations with other parameters are important

• Use of τ -only constraints can be biased towards the baseline model

• Analysis with adding other dataset will be robust

Hazra, Paoletti, Finelli, Smoot, arXiv 2019



Free form solution: datasets used

1 Planck 2015 angular power spectrum and lensing (P15)

2 UV luminosity density from Hubble Frontier Fields (HFF) data
(UV)
Spanning z ∼ 6− 11, we use Bouwens et. al. 2015 and Ishigaki et.
al. 2018

3 Constraints from Lyman-α (QHII)
Spanning z ∼ 6− 8, we use Fan et. al. 2006, Schroeder et. al.
2013, Schenker et. al. 2014
Using parmetric form and Planck-2016 τ and UV luminosity density from HFF,
recent works are Gorce et. al. 2018, Ishigaki et. al. 2018; a new analysis with
free form source function appeared recently Mason et. al. 2019

Hazra, Paoletti, Finelli, Smoot, arXiv 2019



Free form solution: constraints
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Degeneracies and how to break them
Wait for better data:
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Use astrophysical observations
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Upcoming works

• Analysis of inflation and reionization with Planck 2018 data
(released in July 2019)

• Mock reconstruction with Euclid

• Joint forecast of features with Euclid

• Breaking correlations between inflation and reionization, chances
with JWST.



Thank you


