Near-Earth small body nodal encounter mission opportunities

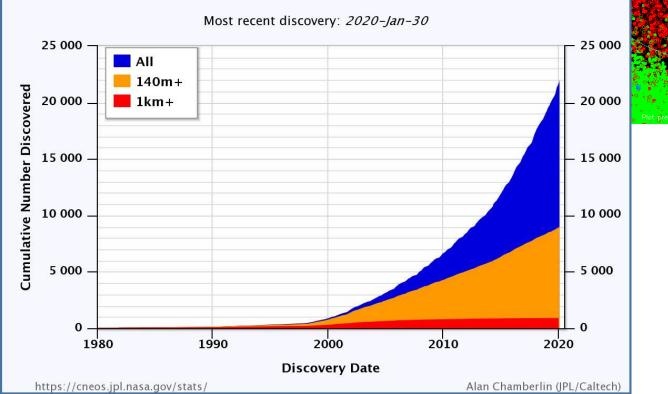
D. Perna (INAF – OAR)

I acknowledge funding from the European Commission's H2020 programme (Marie Sklodowska-Curie grant agreement n. 664931)

L. Casalino (Politecnico di Torino), E. Perozzi (ASI), E. Dotto (INAF – OAR), E. Mazzotta Epifani (INAF – OAR)

XVI Congresso Nazionale di Scienze Planetarie

3-7 febbraio 2020 Centro Culturale Altinate San Gaetano, Padova


Why near-Earth asteroids do matter

- The closest building blocks of the solar system
 - \checkmark Relevant for the origin of prebiotic material on the early Earth
 - ✓ Study of small-sized asteroids (m-sized NEAs observable from Earth)
- Accessible targets for space missions
 - ✓ Science
 - ✓ Water/mineral resources
 - ✓ Planetary defense

NEA population

- Current discovery rate:
 - ✓ >6 objects/night
 - ✓ Mostly "small" asteroids

https://minorplanetcenter.net/

Near-Earth Asteroids Discovered

NEA population

A Ride With The Earth

An animation centered on Earth showing the known objects that have approached to within 20 million km between July 2007 and June 2008. See the Animations Page on the MPC website for a description of the symbols used in this animation.

Population discovered was >5 times smaller than today

A bunch of NEAs (size range $\approx 350 \text{ m} - 17 \text{ km}$) have been explored in situ with ad hoc space missions, each time revealing exciting new insights...

... 1+1+1+1 >> 4

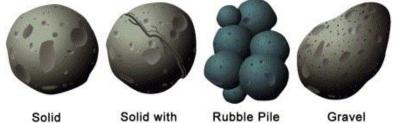
A <u>huge diversity</u> (in terms of composition, size, internal density distribution, material strength, ...) is still to be explored!

Bus-DeMeo Taxonomy Key

S-complex

 s_1 s_2 s_3 s_4 s_7 s_7

C-complex


 $B \underbrace{\qquad } C \underbrace{\qquad } Cb \underbrace{\qquad } Cg \underbrace{\qquad } Cgh \underbrace{\qquad } Ch \underbrace{\qquad } Ch$

X-complex

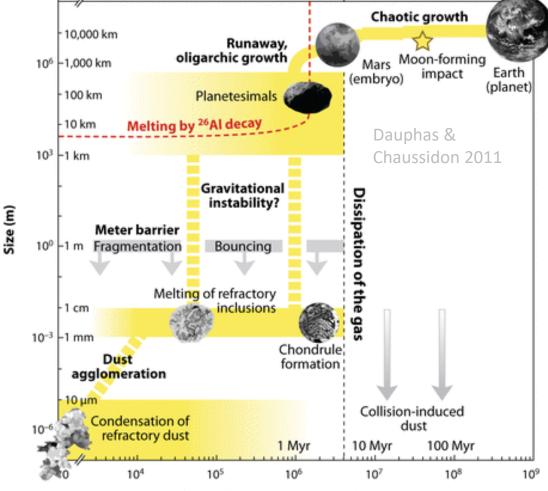
End Members

 $A \int O Q A Q A P A V A V$

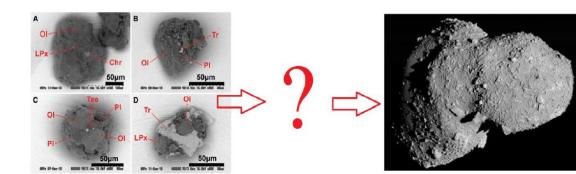
http://smass.mit.edu/busdemeoclass.html F. E. DeMeo, R. P. Binzel, S. M. Slivan, and S. J. Bus. Icarus 202 (2009) 160-180

(Covered

with Dust)


Major Fracture Walkers et al. 2006

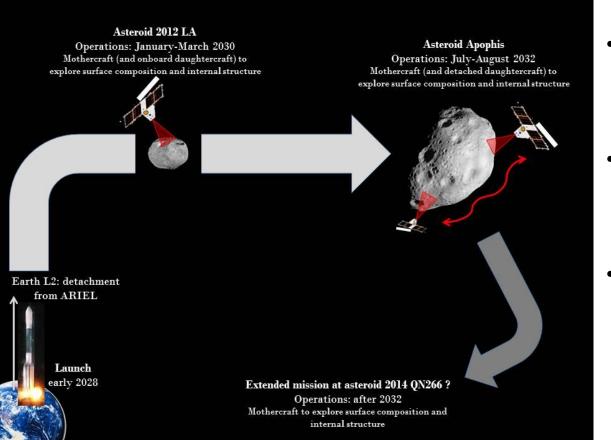
Gravel Conglomeration

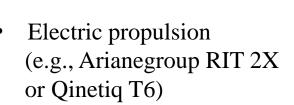

Investigating:

- <u>asteroids' interiors</u>
- very small bodies

gives key information about formation and evolution, from the condensation in the solar nebula at different heliocentric distances, to the collisional accretion, enhancing our understanding of the mechanisms underlying planetary formation.

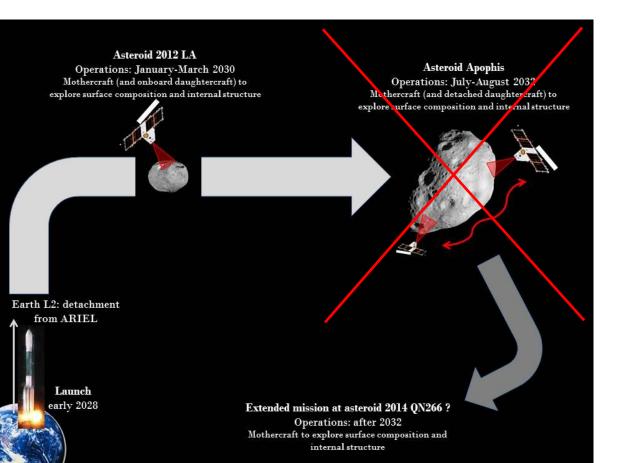
Time after solar system birth (years)


Core Team members				
Davide PERNA (Lead Proposer)	INAF – Osservatorio Astronomico di Roma, Italy			
Alberto ADRIANI	INAF – IAPS, Italy			
Maria Antonietta BARUCCI	LESIA – Observatoire de Paris, France			
Lorenzo CASALINO	Politecnico di Torino, Italy			
Vania DA DEPPO	CNR – IFN, Italy			
Vincenzo DELLA CORTE	INAF – IAPS, Italy			
Elisabetta DOTTO	INAF – Osservatorio Astronomico di Roma, Italy			
Sonia FORNASIER	LESIA - Observatoire de Paris, France			
Alain HERIQUE	IPAG – Université Grenoble Alpes, France			
Daniel HESTROFFER	IMCCE - Observatoire de Paris, France			
Stavro IVANOVSKI	INAF – Osservatorio Astronomico di Trieste, Italy			
Robert JEDICKE	Institute for Astronomy, University of Hawaii, USA			
Jean-Luc JOSSET	Space Exploration Institute, Switzerland			
Wlodek KOFMAN	IPAG – Université Grenoble Alpes, France			
Michèle LAVAGNA	Politecnico di Milano, Italy			
Elena MAZZOTTA EPIFANI	INAF – Osservatorio Astronomico di Roma, Italy			
Patrick MICHEL	CNRS – OCA, France			
Alessandro MURA	INAF – IAPS, Italy			
Pasquale PALUMBO	Università di Napoli Parthenope, Italy			
Dirk PLETTEMEIER	Technische Universität Dresden, Germany			
Jean-Michel REESS	LESIA - Observatoire de Paris, France			
Yves ROGEZ	IPAG – Université Grenoble Alpes, France			
Alessandro ROSSI	IFAC - CNR, Italy			
Giovanni B. VALSECCHI	INAF – IAPS, Italy			
Marco ZANNONI	Università di Bologna, Italy			


2018 ESA "Fast" mission call

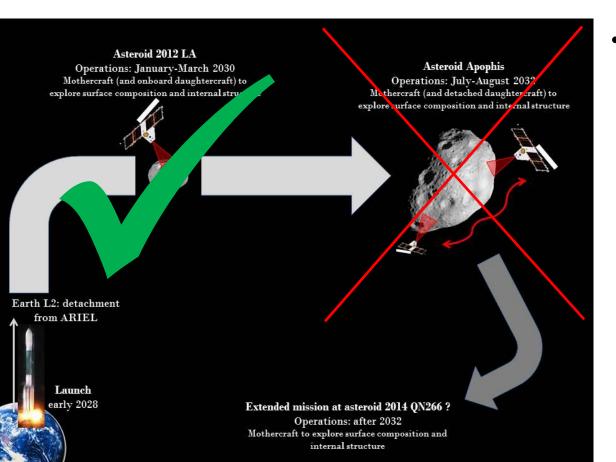
"Near-Earth Space Trekker" selected (6 out of 23 Phase-1 proposals) for Phase-2 after the technical and scientific screening by ESA

- Rendez-vous with multiple NEAs (few months at each target)
 - Baseline targets: **2012 LA** (10-m) and **Apophis** (350-m)
 - Extended mission target: 2014 QN266 (20-m)
- Science goals (to constrain latest theories about planetary formation)
 - Smallest asteroids ever visited
 - First radar investigation of asteroid interiors

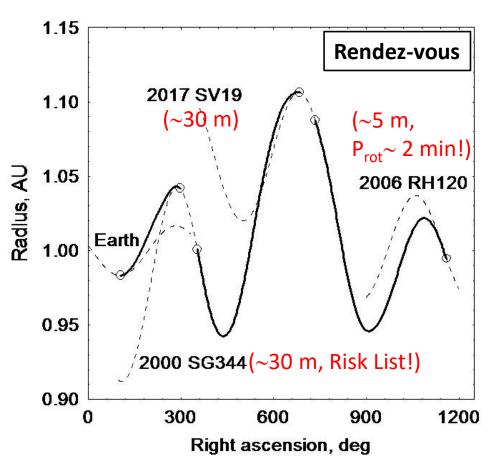

Daughtercraft to be released atApophis (close-up investigation and bistatic radar measurements)

NES

- Total ΔV
 - \checkmark ~4.8 km/s (baseline)
 - \checkmark ~8 km/s (extended)


- NEST proposal didn't pass Phase-2 technical screening: *"incompatible with the boundary conditions of the call"*
 - Radar technology (TRL 4)
 - $\circ \Delta V$ to reach Apophis

- NEST proposal didn't pass Phase-2 technical screening: *"incompatible with the boundary conditions of the call"*
 - Radar technology (TRL 4)
 - $\circ \Delta V$ to reach Apophis

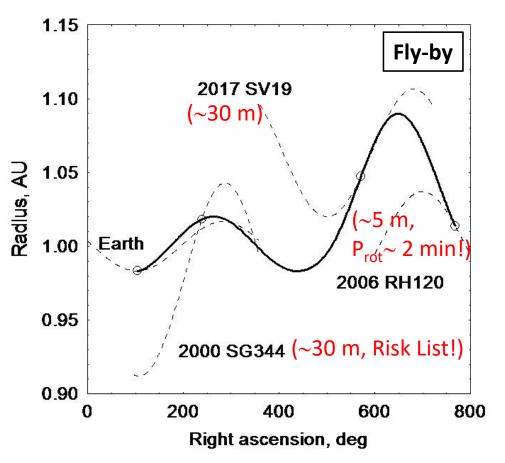


• Extremely positive Phase-1 scientific assessment!

→ Explore next mission opportunities!

✓ Larger mission class
✓ Small/cheap missions (no radar)

"Low-cost" missions: nodal encounters!

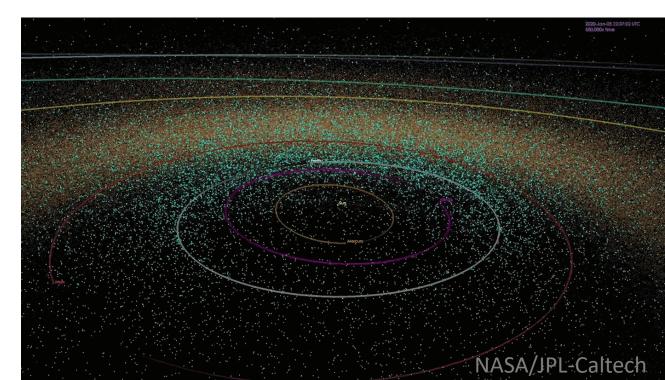


Assuming:

- Spacecraft mass at launch: 850 kg
- o Launch date: 5 Jan 2028

	Date	Leg ∆V (km/s)	V _{rel} (km/s)
Earth	5/1/2028		0
2000 SG344	24/7/2028 22/9/2028	0.945	0
2017 SV19	1/9/2029 31/10/2029	2.000	0
2006 RH120	5/1/2031	1.557	0

"Low-cost" missions: nodal encounters!


Assuming:

- Spacecraft mass at launch: 850 kg
- o Launch date: 5 Jan 2028

	Date	Leg ∆V (km/s)	V _{rel} (km/s)
Earth	5/1/2028		0
2000 SG344	20/5/2028	0.203	1.335
2017 SV19	24/4/2029	0.816	0.550
2006 RH120	2/12/2029	0.000	0.629

"Low-cost" missions: nodal encounters!

- Several further rendez-vous and fly-by solutions exist with similar ΔV
 - More and more (and cheaper) solutions with increasing NEA discovery rate
- Will allow to investigate:
 - Small body diversity
 - Asteroids' internal structure
 - Ultra-small asteroids' properties
 - Ο.

