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CIRCUMSTELLAR DISK DISSIPATION
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What is the time available for disks to disperse?

What mechanisms contribute to this process?
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TIMESCALE FOR DISK EVOLUTION
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Gas and dust last no longer than a few Myrs



DISK DISPERSAL MECHANISMS

Less efficient

More efficient

Stellar encounters: binary companion (e.g., Harris et al. 2012),

tidal stripping in star clusters (e.g., Hueso & Guillot 2005, Adams
et al. 2006)

Jets and stellar winds: mainly efficient in the early stages of

star formation (e.g., Konigl & Salmeron 2011, Matsuyama et al.
2009)

Planet formation: only small fraction of the disk mass ends up
in planets (e.g., Wright et al. 2011, Mayor et al. 2013)

Magnetospheric Accretion

Photoevaporation



PHOTOEVAPORATION

ionized layer

......

Alexander et al. 2006

M pss oy ~ 10719 M, /yr (e.g., Alexander et al 2006)
M oss. ~10%-10° M., /yr (e.g., Owen et al 2011)
M oss oy ~ 108 M, /yr (e.g., Alexander et al 2006)

For a review: Alexander et al. 2014, Ercolano & Pascucci 2017



ACCRETION + PHOTOEVAPORATION

Disk Mass (M)
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Accretion and photoevaporation must operate concurrently in order to
explain the disk lifetimes



INTERPLAY OF ACCRETION & PHOTOEVAPORATION

Ercolano & Pascucci 2017 photoevaporative flow
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- How quickly gas and dust disperse dictates the types of planets that will form in a given
disk

- Understanding the interplay between magnetospheric accretion and photoevaporation is
very important for the planetary system formation



GAS INDICATORS: PHOTOEVAPORATION

2 Hartigan et al. 1995
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High-accretion rate: M__~10° M /yr

Low-accretion rate: M, ~10° M_/yr




GAS INDICATORS: PHOTOEVAPORATION

Measuring the gas component from high-resolution spectroscopy

UVES spectra: resolution 3.5 km/s
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The unbound component is tracing a photoevaporating wind



ONE AIM OF THE ANADIPLOSIS PROJECT:

Extend the analysis of the photoevaporation indicators to a larger
sample of objects spanning:

- objects in different evolutionary stages (e.g., collecting high-
resolution spectra for Classical T Tauri stars with and without jets)

- objects in different mass range (enlarging the analysis to Herbig Ae/
Be stars
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ONE AIM OF THE ANADIPLOSIS PROJECT:

- objects in different evolutionary stages (e.g., collecting high-
resolution spectra for Classical T Tauri stars with and without jets)

Rigliaco et al. in prep.
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ONE AIM OF THE ANADIPLOSIS PROJECT:

- objects in different evolutionary stages (e.g., collecting high-
resolution spectra for Classical T Tauri stars with and without jets)

Rigliaco et al. in prep.

1.2 ——————— _—
. XX Cha | [OI] @ 6300 A
1 b I .
, 08 | y LVC - NC, blueshifted by ~1-5 km/s:
= : Ah ] Tracing gas in photoevaporation
g06T [ ]
> I I\\ ] LVC - BC, centered to the star rest velocity:
0.4 | \|\\ R Tracing gas in keplerian rotation
02l '—IK\v&,\ _
aNp , 7L¥ R N Wind component, blueshifted by few tens
o L. A N S km/s: tracing stellar wind
—200 0 100 200

velocity (km/s)



ONE AIM OF THE ANADIPLOSIS PROJECT:
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resolution spectra for Classical T Tauri stars with and without jets)
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ONE AIM OF THE ANADIPLOSIS PROJECT:

- objects in different evolutionary stages (e.g., collecting high-
resolution spectra for Classical T Tauri stars with and without jets)
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ONE AIM OF THE ANADIPLOSIS PROJECT:

Extend the analysis of the photoevaporation indicators to a larger
sample of objects spanning:

- objects in different evolutionary stages (e.g., collecting high-
resolution spectra for Classical T Tauri stars with and without jets)

What can we understand from this analysis:

- If/how the presence of a jet impacts on our measure of the narrow
component in the low velocity component

- Spotting other wind components in the line profile

- Comparing with theoretical model we can constrain the rate at which the stars
are photoevaporating 2 When photoevaporation takes over accretion as
main disk dispersal process




SUMMARY AND NEXT SPEPS

Accretion and photoevaporation operate concurrently, and
understanding when one takes over the other is fundamental for
the planetary system architecture

The analysis of the photoevaporation indicators is at the beginning,
and enlarging the sample to objects with different properties is
fundamental for our understanding of how disks around young
stars dissipate

Combining accretion and photoevaporation rates of gas content to
the dust content of the disks are the next steps we are taking to
have a full comprehension of the dispersal of disks



