Hosts: Prof. Michela Mapelli,
Mario Pasquato Raffaele Gratton

Annual Astrofit Review meeting

Rome Oct. 23-24 2018
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Search for Intemediate mass black
holes in star Clusters
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How science works now

Raw data ..ot

Gop = € 2%(gap + Ualls) — e2*Usils
= e % gap — 2Uailg sinh(2¢)

> physical metric is

§°P = €29 + 24°4” sinh(24)

1, S, is formed from the Ricci tensor Ras of ¢

S!l = (167TG)_1 /‘gn'iRu,a(_g)]/szz.

Competing
theories

Reduction

Calculation
or
Simulation

intervention
(computer is a tool)

Clean data

10" (4 71Gpppy) (8)72

X (km)

Quantitative
model



Raw data
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How it could work
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An actual example: my project

Do Galactic star clusters contain Intermediate Mass
Black Holes (IMBHs)? @

IMBHs = BHs more massive than stellar BHs (> some
10 M¢,,,) and less massive than Supermassive BHs (<
10°Mg,,.))

Gravitational wave astronomy gave us the first firm
detection of such black holes

Electromagnetic astronomy still did not provide a
firm detection



In my project: competing theories =
IMBH yes / no
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In my project: simulations already fully run

Classification

Raw data ~2000 MOCCA (Monte Carlo) simulations +
Direct N-body simulations... “realistic” -> will
be presented in proof-of-concept paper
Pasquato 2018 submitted
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In my project: mock images from
simulations with COCOA
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In my project: mock images from
mmesimulations with COCOA
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In my project: mock images classified
with deep convolutional neural nets
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By the way, what is machine learning?

* Machine learning is teaching computers by example
instead of programming them

* Make a classifier that eats data and spits (IMBH yes /
IMBH no)

* This easily generalizes to any data, to any yestre
guestion
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But... everybody is doing this already
how is your project new?

* Ever heard of Galaxy Zoo:
https://www.zooniverse.org/about/publications

 Wonder why facebook wants you to click on this:
OO0+ i
- o :Ac

You are hand-labeling data (for free) to train a classifier!
(search for “sentiment analysis”)




No hand labelling in our case

We can’t hand label real observations with
IMBH/no IMBH because we don’t know

So we run simulations (where we know, by
construction, if IMBH is there or not)

Train on simulations, predict on observations
This is what makes my project new



Train/deploy mismatch

We have no real data with reliable labels
(IMBH host / non-host)

Of course: we do not know which clusters are
an IMBH host in the first place

The classifiers are trained on simulations,
where we know who is an IMBH host, by
construction

But they will be deployed on real data



Fake it until you make it

* You only ever see (bad) drawings, but you have to
classify real pictures!

e What to do?

we need good mock observations

Real observation Simulation



Good mock observations

e Two criteria:

1. A classifier cannot discriminate mocks from real

observations based on the same features as the
IMBH/noBH classifier

2. an astronomer (student) cannot discriminate
mocks from real observations in a blind test

e 2is an astronomical Turing test

* | am working on this with a master’s student
(Mr. Piero Trevisan)
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A step back: current results

2000 simulations of star clusters using
MOCCA, an all-inclusive Monte Carlo*

code (Hypki & Giersz 2013)

MOCCA Survey Database | (Askar et al.
2017)

~1300 simulations evolved to 12Gyr,
~40% produced an IMBH

*a Fokker-Planck code that is solved using
Montecarlo techniques
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Figure 1. Histogram of the log masses of the heaviest black hole in the
MOCCA Survey simulations, from snapshots taken at 12Gyr. The mass
function is clearly multimodal, and stellar-mass BH range is well separated
from the IMBH range, as there are few BH with mass in the 10%-103 range.

Log mass of the
heaviest BH in each
simulation at 12Gyr
is bimodal

IMBHs are well
separated from
stellar-mass BHs ->
classification into
IMBH host / not
host is justified
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Figure 2. Number density profiles of all simulation snapshots, in log-log
scale, shown as shaded areas based on kernel density estimation. IMBH
hosts are shown in ochre, non-hosts in pink. Solid lines are actual profiles
corresponding to the two medoids of the IMBH host and non-host group.
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Feature space
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We need to find a bounduary between orange (IMBH) and blue (NO
IMBH) points... remember?

The simple example (right) is 2-D, the real one is 4-D



Learning how to learn

* Selected algorithms (R libraries)

— k-nn (FNN): a point is orange if the majority of its k-
nearest neighbors in feature space is orange;

—svm (e1071): the feature space is transformed into a
much-higher dimensional space, where it is easy to
linearly separate the orange points from the blue; then
the separating hyperplane is transformed back;

— decision trees (party): the feature space is recursively
partitioned along one of its 20 dimensions so that each
split improves the division between blue and orange;

— neural net (h20 / kerasinpython notinr): the hottest
algorithm, aka deep learning. | run out of space to
explain it.



Measuring performance
with cross validation

e Evaluate the trained model on unseen data, but still
use all data we have (here data = mock observations)

e Split data, use subset for training and complement for
testing
* Loop over data (here five times, 5-"fold” CV)
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Best classifiers (neural net, random forest) achieve

> 80% ...

at 1 O% false positive rate
«NOT SO BAD



“This project has received funding from the

European Union’s Horizon 2020 research and
ramme under the Marie

Sktodowska-Curie grant agreement No 664931”

The end?




Not the end yet

* Conferences, talks, teaching:
— Santorini MODEST meeting (June 2018, contrib. talk)
— Innsbruck University (Apr. 2018, invited seminar)

— Held 12-hour course for Ph.D. students in Padova univ. on
machine learning for astronomy

— Supervising a master’s student (Mr. Piero Trevisan),
supervised a bachelor’s student (Ms. Erica Greco)
 Achievements:

— |ISCRA C project at Cineca approved (200°000 core-hours
on DAVIDE GPU cluster)

— Submitted Pasquato et al. 2018 to MNRAS, proof of
concept paper, 1t referee report

— 3 bonus papers (unrelated projects): Ballone, Mapelli &
Pasquato 2018 MINRAS 480, 4684; Pasquato, Miocchi &
Yoon 2018 AplJ accepted; de Angelis et al. JHEA 19, 1



Weighing the IMBH candidate CO-0.40-0.22* in the Galactic Centre
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ABSTRACT

The high velocity gradient observed in the compact cloud CO-0.40-0.22, at a projected distance
of 60 pc from the centre of the Milky Way, has led its discoverers to identify the closeby mm
continuum emitter, CO-0.40-0.22*, with an intermediate mass black hole (IMBH) candidate.
We describe the interaction between CO-0.40-0.22 and the IMBH, by means of a simple
analytical model and of hydrodynamical simulations. Through such calculation, we obtain a
lower limit to the mass of CO-0.40-0.22* of few 10* x M. This result tends to exclude the
formation of such massive black hole in the proximity of the Galactic Centre. On the other
hand, CO-0.40-0.22* might have been brought to such distances in cosmological time-scales,
if it was born in a dark matter halo or globular cluster around the Milky Way.

Key words: black hole physics — ISM: clouds — Galaxy: centre.



BLUE STRAGGLER BIMODALITY: A BROWNIAN MOTION MODEL

Mario PasqQuaro
INAF, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy
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Suk-JIN YooNn
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Draft version September 25, 2018

ABSTRACT

The shape of the radial distribution of Blue Straggler Stars (BSS), when normalized to a reference popula-
tion of Horizontal Branch (HB) stars, has been found to be a powerful indicator of the dynamical evolution
reached by a Globular Cluster (GC). In particular, observations suggest that the BSS distribution bimodality
is modulated by the dynamical age of the host GC, with dynamically unrelaxed GCs showing a flat BSS dis-
tribution, and more relaxed GCs showing a minimum at a radius that increases for increasing dynamical age,
resulting in a natural “dynamical clock”. While direct N-body simulations are able to reproduce the general
trend, thus supporting its dynamical origin, the migration of the minimum of the distribution appears to be
noisy and not well defined. Here we show that a simple unidimensional model based on dynamical friction
(drift) and Brownian motion (diffusion) correctly reproduces the qualitative motion of the minimum, without
adjustable parameters except for the BSS to HB stars mass-ratio. Differential dynamical friction effects com-
bine with diffusion in creating a bimodality in the BSS distribution and determining its evolution, driving the
migration of the minimum to larger radii over time. The diffusion coefficient is strongly constrained by the
need to reproduce the migratory behaviour of the minimum, and the radial dependence of diffusion set by fun-
damental physical arguments automatically satisfies this constraint. Therefore, our model appears to capture
the fluctuation-dissipation dynamics that underpins the dynamical clock.

Subject headings: (Galaxy:) globular clusters: general



Detecting IMBHs with machine learning: feature-based supervised
classification - L. Density profile features in MOCCA-SURVEY
Database I simulations
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ABSTRACT

The gap in mass between supermassive black holes and stellar black holes spans more than
three orders of magnitude. Intermediate-mass black holes (IMBHs) would bridge this gap, but
their very existence is still controversial. Optimizing the usage of data from electromagnetic
observations to complement GW observations probing this range of masses is crucial for
the development of multimessenger astronomy. However, as of now we cannot pinpoint the
conditions under which a dense stellar system in the local universe is likely to be an IMBH host,
due to shortcomings of the usual model-based approach to indirect IMBH detection. Here, for
the first time, we apply a data-driven approach to this problem, based on Machine Learning
(ML). ML techniques saw increased use in astronomy because they optimise the extraction
of useful information from incomplete data, without the need for explicit interpretation based
on physical models. Using an extensive sample of Monte Carlo simulations of star clusters
based on the MOCCA code, the MOCCA-SURVEY Database, we show that machine learning
algorithms can reliably distinguish simulations that host an IMBH from those that do not.
We use a feature-based supervised classification approach. We train classifiers using different
ML algorithms on a set of numeric features (independent variables) calculated from each
simulation snapshot, for which the status as IMBH host is known by construction. Predictive
accuracy on new simulations is measured via cross-validation. We quantify the performance of
classifiers using the area under the receiver operating characteristic curve. This is the first step
towards classifying actual observations, after which we plan to characterize hosts a posteriori.



