Gabriele Cescutti


cescuttiAstroFIt 2 – COFUND fellow since October 1, 2016.

Project ended on September 30, 2019.

INAF Research Centre: Osservatorio Astronomico di Trieste

Email: gabriele.cescutti at

Curriculum vitae (Dec 2016)

List of publications (Dec 2016)

In the Media:



Project title: RNFS – Revealing the Nature of the First Stars: the role of the chemical signatures in the primordial stars of our Galaxy


The First Stars shaped the evolution of the primordial Universe through their energy feedback and they enriched the pristine interstellar medium with elements heavier than lithium. Nowadays, these stars are long dead and only when the next generation facilities push the observational frontier to extremely high redshifts, will it be possible to detect the First Stars and it will be crucial to know what to search for. The scientific community therefore has an important task to fulfill in this period: constraining their nature. Without this input the possibility of finding these primordial stars will be seriously hampered. At the present, the only way to constrain our theoretical understanding of the formation of the first stars is to search for their imprints left in the oldest, still surviving, stars in our own backyard: the Milky Way and its satellites. The strategy taken so far by the Galactic Archaeology community has been to look for the most metal-poor stars, and directly compare their individual chemical abundances with the outputs of the different stellar models proposed for the first stars. The time is ripe to replace this approach with a more sophisticated one. I intend to investigate the large parameter space given by alternative nucleosynthesis scenarios with a stochastic chemical evolution model. The ultimate goal is to provide constraints on the nature of the First Stars (their mass spectrum, their chemical and energetic outputs) and to achieve that the theoretical predictions will be compared to the large amount of data now available thanks to ongoing observational campaigns.

These data cover not only the MW halo, but also other nearby regions hosting old stars with different star formation histories such as the bulge and the satellites of the MW. This is crucial because it improves the constraints on the nature of the First Stars. We are just entering an era where a robust and statistical comparison between models and abundance data is possible, hence making our project feasible.

Here I am: